

COMUNE DI BURAGO DI MOLGORA

Provincia di Monza e della Brianza

DETERMINAZIONE GIUNTA REGIONALE 22 DICEMBRE 2005 - N. 8/1566:

Criteri ed indirizzi per la definizione della Componente geologica, idrogeologica e sismica del Piano di Governo del Territorio, in attuazione dell'art. 57, comma, 1 della l.r. 11 marzo 2005, n. 12

DETERMINAZIONE GIUNTA REGIONALE 30 NOVEMBRE 2011 – N. IX/2616:

Aggiornamento dei "Criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del Piano di Governo del Territorio, in attuazione dell'art.57, comma 1, della I.r. 11 marzo 2005, n. 12", approvati con d.g.r.22 dicembre 2005, n.8/1566 e successivamente modificati con d.g.r.28 maggio 2008, n.8/7374

DETERMINAZIONE GIUNTA REGIONALE 19 GIUGNO 2017 - N. X/6738:

Disposizioni regionali concernenti l'attuazione del piano di gestione dei rischi di alluvione (PGRA) nel settore urbanistico e di pianificazione dell'emergenza, ai sensi dell'art. 58 delle norme di attuazione del piano stralcio per l'assetto idrogeologico (PAI) del bacino del Fiume Po così come integrate dalla variante adottata in data 7 dicembre 2016 con deliberazione n. 5 dal comitato istituzionale dell'autorità di bacino del F. Po.

COMPONENTE GEOLOGICA, IDROGEOLOGICA E SISMICA DEL PIANO DI GOVERNO DEL TERRITORIO

Rapporto Tecnico

Rev.01 – marzo 2024

A seguito delle Osservazioni della Provincia di Monza e Brianza

Dr. Geol. Roverselli Davide

Dr. Geol. Dadomo Andrea

Sommario

1	PREMESSA	4
1.1	Precedenti piani	
1.2	Aggiornamento attuale	
2	STRUTTURA DELLO STUDIO	6
3	ANALISI COMPATIBILITA' PTCP – PROVINCIA DI MONZA BRIANZA	8
4	ASSETTO GEOLOGICO	14
4.1	Aspetti geologici-litologici	14
4.2	Aspetti geomorfologici	16
4.3	Aspetti pedologici	17
4.4	Aspetti geotecnici	22
	I.4.1 Problematica "Occhi Pollini"	
5	ASSETTO IDROGEOLOGICO	33
5.1	La struttura idrogeologica a grande scala	33
5.2	Idrogeologia locale	34
5.3	Pozzi pubblici sul territorio comunale	37
5.4	Piezometria	38
5.5	Soggiacenza	40
5.6	Permeabilità	40
5.7	Idrochimica	41
5.8	Vulnerabilità	44
5	5.8.1 Descrizione del metodo GOD	
5	5.8.2 Applicazione del metodo GOD al territorio comunale	46
6	ASSETTO IDROGRAFICO E IDRAULICO	47
6.1	Idrografia	47
6	5.1.1 Reticolo Idrografico Minore	47
6.2	Attuazione PAI-PGRA	
6.3	Variante PAI (2023)	50
6.4	Analisi di dettaglio su aree rischio R4 – rischio molto elevato	53
6.5	Elementi idraulici	59
7	CARTA DELLA PERICOLOSITA' SISMICA LOCALE	67
,	CARTA DEBEAT ERICOLOGITA GIGINICA LOCALE	02

Prof.	D-9.		
7.1		ormativa sismica	
7.1	.1 E	voluzione normativa, pre 2003	62
7.1		a nuova normativa sismica a livello nazionale	
7.1	.3 N	Iormativa sismica a livello regionale	69
7.2	Atti	vità sismica ed elementi neotettonici e strutturali, con cenni sulla sismicità del territorio	71
7.3		Pericolosità Sismica Locale	
7.3	.1 P	remessa	82
7.3	.2 A	nalisi e valutazione degli effetti di sito finalizzati alla definizione dell'aspetto sismico nei Piani di Gov	erno
del	Territ	orio (d.g.r. 30 novembre 2011, n.9/2616)	82
7.3	.3 V	alutazione della Pericolosità Sismica Locale del Comune di Burago di Molgora - (1° Livello)	89
7.3	.4 C	aratterizzazione semi-quantitativa degli effetti di amplificazione attesi (Fa) – (2° Livello)	90
7.4		utazione dell'azione sismica di progetto (NTC 2018)	
7.4	.1 D	escrizione del moto sismico	116
7.4	.2 A	zione sismica di progetto e spettro di risposta del sito	117
8	CART	TA DEI VINCOLI	125
9	CART	TA DI SINTESI DELLE PROBLEMATICHE GEOAMBIENTALI	128

PREMESSA

Il comune di Burago di Molgora è situato nella parte centro-orientale della provincia di Monza e della Brianza; confina con i comuni di Agrate Brianza, Cavenago di Brianza, Organo e Vimercate. Il Comune di Burago di Molgora occupa una superficie di circa 3.43 km² e presenta quote comprese tra 175 e 192 m s.l.m.

1.1 Precedenti piani

Il Comune di Burago di Molgora è dotato del Piano di Governo del Territorio approvato con Delibera di Consiglio Comunale n. 15 del 29.05.2008, pubblicato ai fini della sua efficacia sul B.U.R.L. del 33 serie Inserzioni e Concorsi del 13.08.2008, la cui variante è stata approvata con deliberazione di Consiglio comunale n. 30 del 02.10.2012, pubblicata sul B.U.R.L. n. 5 – serie Avvisi e Concorsi del 30.01.2013.

1.2 Aggiornamento attuale

Il presente studio, sviluppato sull'intero territorio comunale di Burago di Molgora, è stato redatto a supporto della variante generale del Piano di Governo del Territorio vigente in ottemperanza a quanto previsto dall'art. 57 della l.r. n. 12/2005 e secondo i criteri definiti da:

- **d.g.r. 22 dicembre 2005 n. 8/1566** (Criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del Piano di Governo del Territorio, in attuazione dell'art. 57, comma 1, della l.r. 11 marzo 2005, n.12);
- d.g.r. 30 novembre 2011 n.9/2616 (Aggiornamento dei "Criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del Piano di Governo del Territorio, in attuazione dell'art. 57, comma 1, della l.r. 11 marzo 2005, n.12", approvati con d.g.r. 22 dicembre 2005, n. 8/1566 e successivamente modificati con d.g.r. 28 maggio 2008, n. 8/7374);
- I.r. 28 novembre 2014 n. 31 (Disposizioni per la riduzione del consumo di suolo e per la riqualificazione del suolo degradato);
- d.g.r. 19 giugno 2017 n. X/6738 (Disposizioni regionali concernenti l'attuazione del piano di gestione dei rischi di alluvione (PGRA) nel settore urbanistico e di pianificazione dell'emergenza, ai sensi dell'art. 58 delle norme di attuazione del piano stralcio per l'assetto idrogeologico (PAI) del bacino del Fiume Po così come integrate dalla variante adottata in data 7 dicembre 2016 con deliberazione n.5 dal comitato istituzionale dell'autorità di bacino del F. Po);
- d.g.r. 9 settembre 2019 n. XI/2120, (Aggiornamento dell'allegato 1 ai criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio, in attuazione dell'art. 57 della l.r. 11 marzo 2005, n. 12 approvati con d.g.r. 30 novembre 2011, n. 2616);

- d.g.r. 10 maggio 2021 n. XI/4685, (Ulteriore aggiornamento Dell'allegato 1 ai criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio, in attuazione dell'art. 57 della l.r. 11 marzo 2005, n. 12 (d.g.r. 2616/2011 e d.g.r. 2120/2019));
- **d.g.r.** 26 aprile 2022 n. XI/6314, (Modifiche ai criteri e indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio, in attuazione dell'art. 57 della l.r. 11 marzo 2005, n. 12 approvati con d.g.r. 2616/2011 e integrati con d.g.r. 6738/2017);
- d.g.r. 18 luglio 2022 n. XI/6702 (Aggiornamento 2022 dell'allegato 1 ai criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio, in attuazione dell'art. 57 della l.r. 11 marzo 2005, n.12 approvati con d.g.r. 30 novembre 2011, n.2616);
- d.g.r. 15 dicembre 2022 n. XI/7564 (Integrazione dei criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio relativa al tema degli sprofondamenti (Sinkhole) (Art. 57 della I.r. 11 marzo 2005, n. 12)).

In merito agli aspetti idraulici, il presente documento considera:

- I.r. 11 marzo 2005 n. 12 (Legge per il governo del territorio) in particolare all'art. 58 bis (Invarianza idraulica, invarianza idrologica e drenaggio urbano sostenibile);
- Direttiva Alluvioni 2007/60/CE;
- **d.lgs. 2010 n. 49** (Attuazione della direttiva 2007/60/CE relativa alla valutazione e alla gestione dei rischi di alluvioni);
- d.g.r. 10 dicembre 2015 n. X/4549 (Direttiva 2007/60/CE Contributo di Regione Lombardia al piano di gestione del rischio di alluvioni relativo al distretto idrografico padano, in attuazione dell'art. 7 del d.lgs. 49/2010);
- I.r. 15 marzo 2016, n. 4 (Revisione della normativa regionale in materia di difesa del suolo, di prevenzione e mitigazione del rischio idrogeologico e di gestione dei corsi d'acqua);
- Decreto del Presidente del Consiglio dei Ministri 27 ottobre 2016 (Approvazione del Piano di gestione del rischio di alluvioni del distretto idrografico Padano);
- I.r. 10 marzo 2017, n. 7 (Recupero dei vani e locali seminterrati esistenti)
- r.r. 23 novembre 2017 n. 7 (Regolamento recante criteri e metodi per il rispetto del principio dell'invarianza idraulica ed idrologica ai sensi dell'articolo 58 bis della legge regionale 11 marzo 2005, n. 12 (Legge per il governo del territorio)) approvato con d.g.r. 20/11/2017 n. 7372. Contiene le modifiche e le integrazioni introdotte dalle norme sotto riportate con l'indicazione della loro entrata in vigore:
 - o **r.r. 29 giugno 2018 n. 7**, entrato in vigore il 4 luglio 2018;

R4251 - 6/129

o r.r. 19 aprile 2019 – n. 8, entrato in vigore il 25 aprile 2019;

o I.r. 26 novembre 2019 – n. 18, entrata in vigore il 11 dicembre 2019.

Per gli aspetti sismici prende atto infine di:

• d.g.r. 11 luglio 2014 – n.10/2129 (Aggiornamento delle zone sismiche in Regione Lombardia (l.r.

1/2000, art. 3, c. 108, lett. d)), modifica la zona sismica da 4 a 3;

• d.g.r. 10 ottobre 2014 - n.10/2489 (Differimento del termine di entrata in vigore della nuova

classificazione sismica del territorio approvata con d.g.r. 21 luglio 2014, n. 2129 "Aggiornamento

delle zone sismiche in Regione Lombardia" (l.r. 1/2000, art.3, comma 108, lett. d));

I.r. 12 ottobre 2015 – n. 33 (Disposizioni in materia di opere o di costruzioni e relativa vigilanza in

zone sismiche)

• d.g.r. 30 marzo 2016 - n. X/5001 (Approvazione delle linee di indirizzo e coordinamento per l'esercizio

delle funzioni trasferite ai comuni in materia sismica (art. 3, comma 1, e 13, comma 1, della l.r.

33/2015))

Decreto Ministeriale 17 gennaio 2018 (Aggiornamento delle «Norme tecniche per le costruzioni»).

L'attuale documento analizza inoltre la compatibilità con il vigente PTCP della Provincia di Monza Brianza

approvato con deliberazione del Consiglio Provinciale n.16 del 10 luglio 2013 e pubblicata sul Bollettino

Ufficiale della Regione Lombardia, Serie Inserzioni, ai sensi della I.r.12/2005.

2 STRUTTURA DELLO STUDIO

Lo studio geologico nel suo complesso è articolato in tre distinte e consequenziali fasi di lavoro. Tali fasi sono

eseguite preliminarmente allo sviluppo del progetto urbanistico ed hanno avuto come finalità quella di offrire

al processo progettuale di pianificazione urbanistica del territorio comunale, gli elementi conoscitivi

indispensabili all'individuazione delle potenzialità, vocazioni e vulnerabilità del territorio dal punto di vista

geologico, con specifico riferimento alla prevenzione del rischio ed alla mitigazione del dissesto idrogeologico

ed ambientale.

Gli specifici aspetti presi in esame riguardano la geologia, litologia, stratigrafia, geomorfologia, pedologia,

idrografia, idrogeologia, idraulica, sismica, geotecnica e geologia ambientale.

Facendo riferimento alle fasi di studio contemplate nelle norme regionali, il presente studio è stato quindi

articolato nelle seguenti tre fasi di lavoro: analisi preliminare, fase di sintesi/valutazione e fase di proposta.

1. Fase di analisi preliminare: è stata inizialmente basata sulla raccolta, analisi, interpretazione critica

ed omogeneizzazione dei dati esistenti, integrati da analisi foto-interpretativa e controlli sul terreno.

L'indagine bibliografica preliminare ha consentito la raccolta dei dati geologici, geognostici, geotecnici, idraulici ed idrogeologici puntuali.

Tale fase ha portato alla redazione delle seguenti cartografie:

- Tav. 1 Carta geologica, geomorfologica e pedologica
- Tav. 2 Tavola geologico-tecnica e delle indagini territoriali disponibili per la definizione del fenomeno degli "Occhi Pollini"
- Tav. 3 Carta idrogeologica
- Tav. 4 Carta PAI-PGRA
- Tav. 5 Assetto idrografico-idraulico
- **Ease di sintesi/valutazione**: in questa fase, attraverso una valutazione incrociata degli elementi analitici raccolti, il territorio è stato interpretato in funzione degli attuali e prevedibili livelli di integrità, rischio e vulnerabilità.

Tale fase ha portato alla redazione delle seguenti cartografie:

- Tav. 6 Carta della Pericolosità Sismica Locale
- Tav. 7 Carta dei Vincoli
- Tav. 8 Carta di Sintesi
- **Fase di proposta**: in questa fase, le unità idro-geo-morfologiche individuate nella fase precedente sono state distinte in classi omogenee di fattibilità geologica delle azioni di piano in conformità alle disposizioni regionali vigenti.

Tale fase ha portato alla redazione della seguente cartografia:

- Tav. 9 – Carta di Fattibilità Geologica per le Azioni di Piano

In tale tavola, l'intero territorio comunale viene suddiviso in classi (e sottoclassi, contraddistinte dalle stesse condizioni idro-geo-morfologiche, geotecniche ed idrauliche) di fattibilità geologica per le azioni di piano previste dalle direttive regionali, fornendo gli input per la formulazione delle nuove previsioni urbanistiche di PGT.

GEOINVEST s.r.l.
Geologia-Geofisica

3 ANALISI COMPATIBILITA' PTCP – PROVINCIA DI MONZA BRIANZA

Con deliberazione di Consiglio Provinciale n.31 del 12 novembre 2018, pubblicata su BURL-SAC n.1 del 2

gennaio 2019, la Provincia di Monza e Brianza ha approvato la variante alle Norme del Piano Territoriale di

Coordinamento Provinciale e al contempo lascia inalterate le cartografie di piano.

Con Deliberazione Consiglio Provinciale n. 4 del 15.02.2022 è stata definitivamente approvata la Variante del

PTCP della Provincia in adeguamento alla soglia regionale di riduzione del consumo di suolo ai sensi della L.R.

31/2014, pubblicata sul Bollettino Ufficiale della Regione Lombardia (BURL-SAC n.14 del 06.04.2022).

Relativamente ai contenuti individuati come minimi negli atti dei PGT nella normativa del PTCP vigente alla

data di adozione del PGT, di seguito sono analizzati e definiti nel dettaglio locale gli elementi geoambientali

riportati in:

Tavola 8 – Assetto idrogeologico (Fig. 1)

Tavola 9 – Sistema geologico ed idrogeologico (Fig. 2)

e descritti nelle Norme di Piano nella Sezione II – "Ambiti a prevalenza ambientale e naturalistico" (artt. 8 e

9) e nella Sezione III – "Ambiti, Sistemi ed elementi di rilevanza paesaggistica" (artt. 10 ed 11).

Nello specifico, in ottemperanza ai contenuti minimi degli atti del PGT, in corrispondenza del territorio del

Comune di Burago di Molgora si verifica che:

Art. 8 – Assetto idrogeologico

Rilevazione dei dissesti idrogeologici

Non si segnalano nuovi dissesti nel territorio comunale.

Aree a suscettività al fenomeno degli "occhi pollini"

La **Tav. 2** – "Tavola geologico-tecnica e delle indagini territoriali disponibili per la definizione del fenomeno

degli occhi pollini" è stata redatta con l'intenzione di raccogliere i principali elementi conoscitivi diretti

(penetrometrie/sondaggi/trincee) di analisi del territorio eseguiti nel passato.

La *Tav. 8 – "Carta di Sintesi"* delimita planimetricamente il territorio potenzialmente interessato

evidenziando il settore con elevata suscettività al fenomeno degli "occhi pollini", recependo la classificazione

del territorio definita dal PTCP.

GEOINVEST s.r.

La **Tav. 9** – "Carta di Fattibilità Geologica per le Azioni di Piano" classifica tali aree e le relative Norme

Geologiche di Piano definiscono le misure e le regole specifiche per la problematica, richiamando altresì le

linee guida inserite nella relazione del PTCP.

Aree allagabili con tempo di ritorno di cento anni [...]

La Tav. 8 - "Carta di Sintesi" (mediante gli estratti della "Carta PAI-PGRA" ivi contenuti) delimita

planimetricamente il territorio potenzialmente interessato da tale fenomeno. Nella tavola sono altresì

indicati gli esiti (Stato di Fatto e di Progetto) dello studio idraulico di dettaglio effettuato sulla Molgora e in

corso di approvazione.

La **Tav. 9** – "Carta di Fattibilità Geologica per le Azioni di Piano" classifica tali aree e le relative Norme

Geologiche di Piano definiscono le misure e le regole specifiche per la problematica.

Recepimento dei contenuti del PAI [...]

Non sono presenti zone PAI definite dalla "Carta PAI-PGRA" all'interno del territorio comunale.

- Problematica antisismica

Il Comune di Burago di Molgora, ai sensi della d.g.r. 11 luglio 2014 – n.10/2129, risulta classificato in zona

sismica 3. Le problematiche e le linee d'applicazione secondo il D.M. 14 gennaio 2008 "Norme Tecniche per

le Costruzioni" aggiornate con D.M. del 17 gennaio 2018 sono esplicitate nel paragrafo dedicato che segue e

nella **Tav. 6** – "Carta della Pericolosità Sismica Locale".

La Tav. 9 – "Carta di Fattibilità Geologica per le Azioni di Piano" riporta la classificazione sismica e le relative

Norme Geologiche di Piano definiscono le misure e le regole specifiche per la problematica.

<u>Art. 9 – Sistema delle acque sotterranee</u>

- Analisi storica delle oscillazioni piezometriche

La tematica è affrontata nello specifico capitolo inerente all'idrogeologia e in Tav. 3 – "Carta idrogeologica".

- Vulnerabilità degli acquiferi

Non risultano industrie a Rischio d'Incidente Rilevante all'interno del comune di Burago di Molgora, in Tav.

8 – "Carta di Sintesi" viene riportata solo la classificazione della vulnerabilità intrinseca calcolata con il

metodo GOD nel capitolo riguardante l'idrogeologia.

Zone di rispetto dei pozzi pubblici

Nella *Tav. 3 – "Carta idrogeologica"* vengono definiti, nel dettaglio, l'ubicazione dei pozzi pubblici attivi.

GEOINVEST s.r.l.
Geologia-Geofisica

Nella *Tav.* 7 – "Carta dei Vincoli" sono riportate tali ubicazioni e relative fasce di rispetto.

Criteri progettuali per le nuove trasformazioni urbanistiche e infrastrutturali volti:

o 1 - Immissione delle acque meteoriche nel sottosuolo

In funzione dei gradi "alto" e "molto alto" di suscettività al fenomeno degli occhi pollini, in *Tav. 9 – "Carta di Fattibilità Geologica per le Azioni di Piano"* è stata inserita una classe specifica per gli occhi pollini che, in accordo con lo stesso PTCP (Linee guida specifiche per gli occhi pollini, Relazione PTCP) non permette l'immissione delle acque meteoriche nel sottosuolo.

o 2 - Invaso temporaneo delle acque meteoriche

o 3 - Risparmio idrico, riciclo e riutilizzo delle acque meteoriche

Ricadendo il Comune di Burago di Molgora in zona ad alta criticità idraulica (A) (Allegato C, R.R. 23 novembre 2017, n. 7 - "Regolamento recante criteri e metodi per il rispetto del principio dell'invarianza idraulica ed idrologica ai sensi dell'articolo 58 bis della legge regionale 11 marzo 2005, n. 12 (Legge per il governo del territorio)"), per una migliore definizione di quanto all'Art. 9.3.e del PTCP, si rimanda allo Studio Comunale di Gestione del Rischio Idraulico di cui al comma 7, Art. 14 del R.R. 23 novembre 2017, n. 7, redatto dal gestore del SII nel maggio 2021.

Art. 10 - Sistema delle acque superficiali

Reticolo idrografico

Per la definizione del reticolo idrografico si rimanda allo specifico Studio del Reticolo Idrico Minore e relativa

Tav. 1, oltre che alla *Tav.* 5 – "Assetto idrografico-idraulico" – del presente documento.

Invarianza idraulica e idrologica

Ricadendo il Comune di Burago di Molgora in zona ad alta criticità idraulica (All. C, R.R. 23 novembre 2017, n. 7 - "Regolamento recante criteri e metodi per il rispetto del principio dell'invarianza idraulica ed idrologica ai sensi dell'articolo 58 bis della legge regionale 11 marzo 2005, n. 12 (Legge per il governo del territorio)"), per una migliore definizione di quanto all'Art. 9.3.e del PTCP, si rimanda allo Studio Comunale di Gestione del Rischio Idraulico di cui al comma 7, Art. 14 del R.R. 23 novembre 2017, n. 7, redatto dal gestore del SII nel maggio 2021.

<u>Art. 11 – Elementi geomorfologici</u>

Gli elementi geomorfologici individuati sono stati inseriti nelle tavole **Tav. 1** – "Carta geologica, geomorfologica e pedologica", nella **Tav. 7** – "Carta dei Vincoli" e nella **Tav. 9** – "Carta di Fattibilità Geologica per le Azioni di Piano". Nel territorio comunale sono presenti:

GEOINVEST s.r.l.
Geologia-Geofisica

Orli di terrazzo

Si tratta di elementi specifici di delimitazione tra le valli fluviali ed i terrazzi fluvioglaciali. Nel dettaglio si

localizzano principalmente in corrispondenza dell'incisione del Torrente Molgora.

La definizione planimetrica del PTCP è stata verificata nel dettaglio a seguito di uno specifico rilievo

geomorfologico; sono state escluse ridotte modificazioni morfologiche in parte o totalmente assorbite a

seguito dell'uso del suolo locale a scopi agricoli. In ambito urbano, laddove gli orli di terrazzo mostrano ampi

tratti rimaneggiati che hanno compromesso la loro originale identità e continuità morfologica, se ne propone

l'esclusione dalla salvaguardia di cui all'Art. 11.

Gli orli di terrazzo definiti dal PTCP sono quindi stati adeguati alla scala di dettaglio e suddivisi tra 'evidenti' e

'compromessi'; entrambi riportati in Tav. 1, mentre in Tav. 7 sono riportati solo gli orli di terrazzo 'evidenti'

che creano vincolo.

Nella Tav. 8 – "Carta di Fattibilità Geologica per le Azioni di Piano" a tali aree si sono applicate le specifiche

previsioni prescrittive e prevalenti descritte al punto 4c.

Ambiti vallivi dei corsi d'acqua

Nella Tav. 7 – "Carta dei Vincoli" si è rappresentato l'ambito vallivo del Torrente Molgora, area individuata

in Tavola 9 del PTCP e, in alcuni tratti, adeguata agli orli di terrazzo aggiornati alla scala di dettaglio.

Nella **Tav. 9** – "Carta di Fattibilità Geologica per le Azioni di Piano" a tali aree si sono applicate le specifiche

previsioni prescrittive e prevalenti descritte al punto 3d.

Riconoscimento ulteriori elementi geomorfologici

Non sono stati censiti ulteriori elementi geomorfologici locali caratterizzanti.

Attribuzione classe di fattibilità agli elementi geomorfologici

Nella Tav. 9 – "Carta di Fattibilità Geologica per le Azioni di Piano" agli elementi geomorfologici segnalati è

stata applicata un'adeguata classe di fattibilità geologica.

GEOINVEST s.r.
Geologia-Geofisica

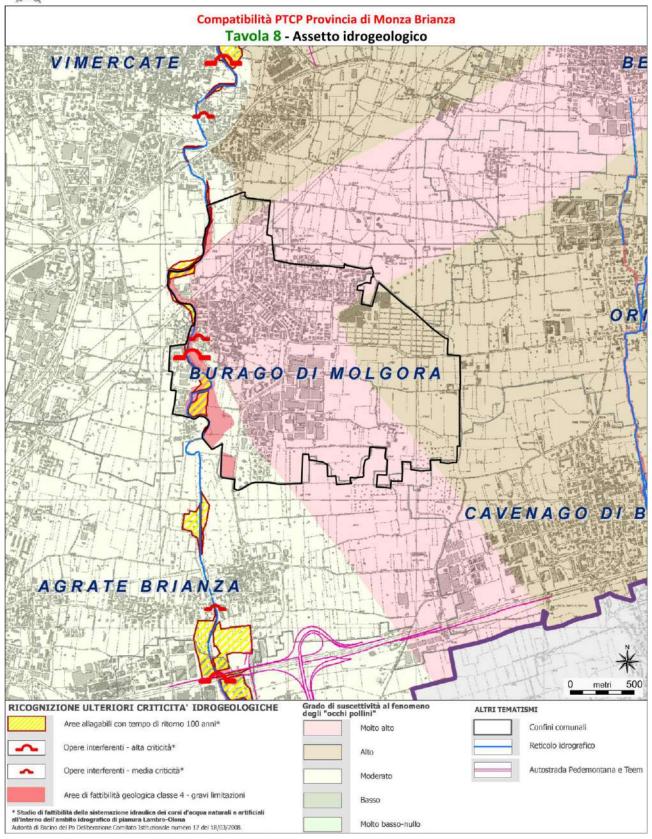


Fig. 1. Estratto fuori scala della Tavola 8 del PTCP di Monza Brianza.

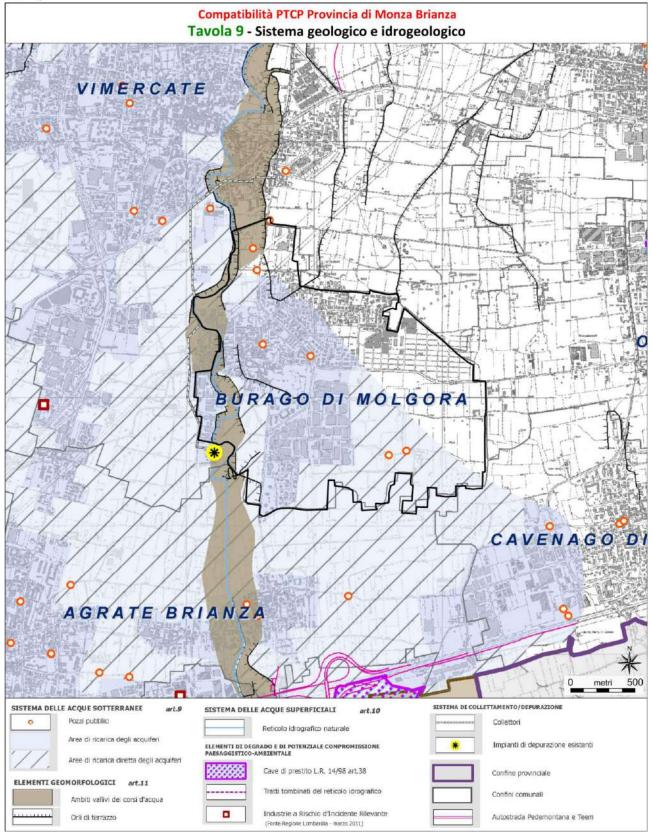


Fig. 2. Estratto fuori scala della Tavola 9 del PTCP di Monza Brianza.

4 ASSETTO GEOLOGICO

4.1 Aspetti geologici-litologici

Le nozioni principali per l'inquadramento geologico, idrologico e morfologico sono state desunte, nella gran

parte, dalle note illustrative della "Carta Geologica d'Italia alla scala 1: 100.000 – Foglio 45 Milano".

Il territorio di Burago di Molgora si colloca in corrispondenza del margine inferiore dall'alta pianura terrazzata

lombarda che è caratterizzato da depositi quaternari di origine alluvionale risalenti ai periodi interglaciali

delle grandi glaciazioni pleistoceniche.

Si tratta, dal punto di vista litologico, di materiali sabbiosi e sabbioso-ghiaiosi in matrice limosa spesso

subordinata; a questi si intercalano orizzonti argillosi e argilloso-limosi.

Secondo le Note Illustrative della Carta Geologica d'Italia alla scala 1:100.000 - Foglio 45 Milano (fonte

ISPRA), il territorio di Burago di Molgora è caratterizzato da:

• Diluvium Medio (fluvioglaciale Riss – q2): costituisce i ripiani terrazzati che occupano una posizione

altimetricamente intermedia tra il Diluvium Antico ed il Livello Fondamentale della Pianura;

composto da ghiaie sabbiose con strato di alterazione superficiale argilloso ocraceo.

• Diluvium Recente (fluvioglaciale Riss-Wurm – q3): depositi ghiaiosi-sabbiosi-argillosi che

costituiscono il livello fondamentale della pianura, composti da ghiaie sabbiose e sabbie con strato

superficiale di alterazione limitato a 40-60 cm, generalmente brunastro, costituenti il livello

fondamentale della pianura.

In maggior dettaglio, il territorio comunale di Burago di Molgora si sviluppa su depositi quaternari

appartenenti per la maggior parte alle Unità del Bacino dell'Adda (PEO, BEE), si inserisce quindi in un contesto

di Alta Pianura Lombarda prossima al limite meridionale dei rilievi della fascia morenica pedemontana,

solamente in piccole porzioni a valle del terrazzo affiora un'unità denominata Sintema del Po che è l'unità

più recente non riferibile al Bacino dell'Adda. Si riconoscono i tre sintemi di seguito elencati e descritti dal

più antico al più recente e superficiale:

Sintema della Specola (PEO): composta da depositi fluvioglaciali a granulometria prevalentemente

grossolana costituiti da ghiaie a supporto di clasti con matrice fine da sabbiosa a limoso argillosa,

talora abbondante. I depositi sono grossolanamente stratificati, con strati definibili per variazioni

granulometriche. Le strutture sedimentarie, rare e concentrate in pochi livelli, sono rappresentate

da embricature e iso-orientazioni dei clasti. Le porzioni sommitali sono costituite da livelli di

sedimenti fini massivi da limoso sabbiosi a limoso argillosi, con un aumento della frazione argillosa

GEOINVEST s.r.

con la profondità. La superficie limite superiore coincide con la superficie topografica o è costituita da un limite erosionale con i depositi dell'Allogruppo di Besnate, mentre la superficie limite inferiore è una superficie di erosione che pone l'Alloformazione della Specola a contatto con le unità più antiche. *Pleistocene medio*.

- Supersintema di Besnate: composta da depositi fluvioglaciali al limite tra ambiente di conoide e ambiente braided, in corrispondenza del passaggio tra colline moreniche e pianura fluvioglaciale. Costituita da ghiaie in prevalenza a supporto di matrice sabbiosa fine limosa, più raramente di clasti; sono localmente presenti delle lenti di ghiaia grossolana e ciottoli a supporto di clasti. I depositi sono grossolanamente stratificati, con strati definibili per variazioni granulometriche. Le strutture sedimentarie, rare e concentrate in pochi livelli, sono rappresentate da embricature e isoorientazioni dei clasti. La superficie limite superiore coincide con la superficie topografica o è costituita da un limite erosionale con i depositi dell'Unità Postglaciale, mentre la superficie limite inferiore è una superficie di erosione che pone l'Allogruppo di Besnate a contatto con le unità più antiche. Lo spessore complessivo dell'intera unità è relativamente modesto, non superando in genere gli 8 m oltrepassati al di sotto dei quali compare un'unità sepolta conglomeratica probabilmente ascrivibile alla formazione del "Ceppo dell'Adda" di età pleistocenica inferiore. Pleistocene medio-sup.
 - O Unità di Cadorago (BEE): ghiaie massive o organizzate, a supporto di clasti o di matrice, ciottoli con dimensioni massime da centimetriche a 30cm, poligenica; intercalazioni sabbiose (depositi fluvioglaciali). Diamicton a supporto di matrice (depositi glaciali). Alterazione limitata alla porzione superficiale. Limi (depositi di esondazione). Copertura loessica discontinua.
- Sintema del Po Unità Postglaciale (POI): composta da depositi fluviali e alluvionali costituiti da ghiaie medio grossolane a supporto sia di clasti con scarsa matrice sia di matrice sabbiosa e da sabbie e limi con intercalazioni ghiaiose ed argillose. Le frazioni a granulometria fine (limi e sabbie) aumentano in percentuale spostandosi da Nord a Sud lungo il corso del Torrente Molgora. È caratterizzata da un'alterazione poco evoluta con suoli assenti o poco sviluppati. La sua superficie limite superiore coincide con la superficie topografica, mentre la sua superficie limite inferiore è una superficie di erosione che pone l'Unità Postglaciale a contatto con l'Allogruppo di Besnate. Lo spessore complessivo è assai variabile. Pleistocene sup-Olocene.

via della Conciliazione, 45/A - 29122 Piacenza Italia telefono 0523 593622 - fax 0523 593640 www.geoinvest.it - geoinvest@geoinvest.it PEC: geoinvest@legalmail.it

4.2 Aspetti geomorfologici

Il territorio di Burago di Molgora può essere descritto da tre principali unità di paesaggio caratterizzate per omogeneità morfologica:

- Unità della Valle del Torrente Molgora: è il principale elemento morfologico che interrompe la continuità della pianura ed è costituito dall'alveo del Torrente Molgora e delle aree ad esso immediatamente circostanti. La piana alluvionale nel suo complesso risulta di estensione molto limitata. L'alveo attuale si presenta incassato, con dislivelli rispetto alle sponde nell'ordine dei 3-4 m. In prossimità dell'alveo è presente un terrazzo alluvionale, non sempre precisamente definibile a causa dello scarso dislivello che lo separa dalla piana principale e delle estese modellazioni antropiche della superficie topografica che si sono operate in epoca storica. Sono talvolta riconoscibili delle morfologie associate alla naturale evoluzione del corso d'acqua quali paleoalvei abbandonati e terrazzamenti di ordine minore.
- Unità della Piana Principale: piana sulla quale insiste l'abitato di Burago di Molgora e che comprende gran parte del territorio analizzato, è una superficie appartenente alla grande conoide pedemontana di origine glacigenica e riferibile agli apporti del Torrente Molgora che la attraversa. La piana si presenta nel suo complesso subpianeggianteò-; sono presenti blande ondulazioni, maggiormente evidenti nel settore settentrionale del territorio comunale, interpretabili come relitti di paleoalvei di secondaria importanza dovuti a divagazioni fluviali proprie di un ambiente sedimentario di conoide.
- Unità dei Terrazzamenti Intermedi: localizzata nel settore settentrionale del territorio comunale, si manifesta con terrazzi rilevati rispetto alla piana circostante alla quale si raccordano con versanti dolci e poco acclivi. Tali terrazzi, di genesi fluvioglaciale e con età e posizione intermedia tra quella antica dei pianalti a ferretto e quella recente della piana principale, testimoniano un'evoluzione articolata, espressa da alcuni terrazzamenti minori. Il terrazzo principale risulta, inoltre, suddiviso in vari blocchi separati da valli più recenti che si innestano nella piana principale. Le superfici delimitate da questi terrazzi risultano essere omogenee e prive di un reticolo di drenaggio evidente e/o attivo.

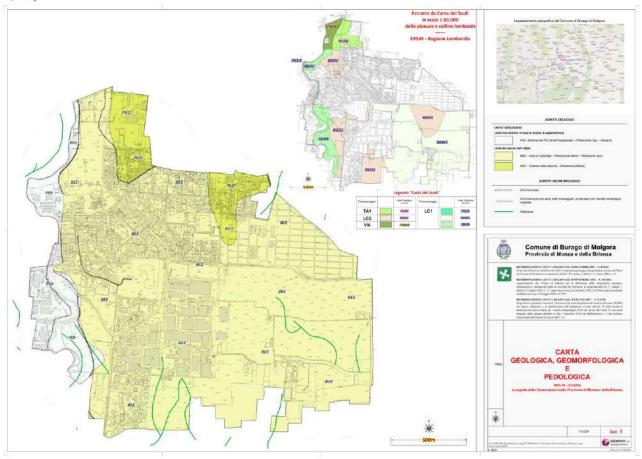


Fig. 3. Carta geologica, geomorfologica e pedologica (Tav. 1, fuori scala).

4.3 Aspetti pedologici

In funzione delle cartografie messe a punto da ERSAF e della conseguente classificazione (Fig. 4) è possibile osservare che il territorio di Burago di Molgora è situato dal punto di vista pedologico nelle "Superfici terrazzate del Pleistocene medio-superiore, emergenti dalla piana proglaciale Wurmiana" (Sistema T), nelle "Piana proglaciale Wurmiana ("Livello Fondamentale della Pianura"), esterna alle cerche costruite dalle morene frontali" (Sistema L) e nelle "Valli fluviali corrispondenti ai piani di divagazione, attivi o fossili, dei corsi d'acqua dell'attuale reticolo idrografico (Olocene)" (sistema V). All'interno di queste tre macroaree nel territorio comunale sono stati riconosciuti i seguenti sottosistemi e relative unità:

SISTEMA T:

 TA, "Lembi residui di piane fluvioglaciali pre-würmiane costituenti superfici terrazzate sulla pianura, distinti in terrazzi superiori, attribuiti ad epoche glaciali più antiche del riss (mindel e precedenti), e terrazzi inferiori rissiani, entrambi costituiti da sedimenti grossolani molto alterati, ricoperti da coltri eoliche e/o colluviali"

TA1, "Terrazzi ben conservati e solo marginalmente in erosione, a morfologia subpianeggiante o dolcemente ondulata. La pendenza è generalmente nulla o bassa (range modale delle pendenze = 2%, range estremo 1÷10%)". Burago di Molgora è rappresentata dall'unità tipologica di suolo: VLO1.

SISTEMA L:

- LC, "Settore apicale della piana proglaciale o "piana pedemontana", addossata ai rilievi (montagna, apparati morenici e terrazzi antichi), chiamata anche alta pianura ghiaiosa. È formata dalla coalescenza dei conoidi alluvionali, a morfologia subpianeggiante o leggermente convessa, costituiti da sedimenti fluvioglaciali grossolani non alterati";
 - o LC1, "Estese superfici a morfologia subpianeggiante, solcate da evidenti tracce di paleoidrografia a canali intrecciati e talvolta dolcemente ondulate in prossimità dei principali solchi vallivi. Sono costituite dai depositi di conoide e rappresentano gli ambienti più diffusi dell'alta pianura ghiaiosa. Comprendono le superfici ondulate o subpianeggianti di transizione ai principali sistemi fluviali, lievemente ribassate e delimitate da orli di terrazzi convergenti o raccordate in lieve pendenza nella direzione dei solchi vallivi". Burago di Molgora è rappresentata dall'unità tipologica di suolo TTC1, SAM1, QUI1.
 - LC2, "Superfici caratterizzate da sedimenti a granulometria medio-fine, comprendenti: 1)
 Aree pianeggianti costituite da depositi di interconoide, prive di significativi dislivelli
 morfologici rispetto a quelle circostanti (LC1), con una spinta alterazione in posto dei
 materiali d'origine (forse porzioni residuali di terrazzi più antichi "annegate" nei sedimenti
 würmiani); 2) Aree ondulate situate alla base dei rilievi caratterizzate da depositi colluviali, o
 parti distali delle conoidi dove i flussi idrici giungevano con una ridotta capacità di trasporto".
 Burago di Molgora è rappresentata dall'unità tipologica di suolo RSO1.

SISTEMA V:

- VI, "Piane fluviali a dinamica prevalentemente deposizionale, in parte inondabili, costituite da sedimenti recenti o attuali";
 - VI6, "Superfici a morfologia pianeggiante, situate alla stessa quota del corso d'acqua o poco in rilievo, inondabili durante le piene di maggiore consistenza (r.i. assente o lieve). Sono presenti nel tratto medio-superiore dei corsi d'acqua e nelle piane montane, in posizione intermedia fra la piana fluviale terrazzata e le aree più inondabili limitrofe ai corsi d'acqua".
 Burago di Molgora è rappresentata dall'unità tipologica di suolo FNM3.

Nella seguente tabella sono descritte in dettaglio le unità tipologiche di suolo sopracitate e riportate anche in Tav. 1 (fonte ERSAF).

PEDO-	UNITÀ TIPOLOGICA	DESCRIZIONE			
PAESAGGIO	DI SUOLO	DESCRIZIONE			
TA1	VLO1 (NUM_UC 261)	Il pedopaesaggio è quello delle superfici rappresentative modali e meglio conservate dei terrazzi rissiani caratterizzate da una morfologia subpianeggiante regolare con quota media di 196 m. s.l.m. e pendenza media dell'1%, con suoli sviluppatisi su substrati ghiaiosi a matrice sabbiosa mediamente alterati. L'uso del suolo prevalente è costituito da seminativi non irrigui. I suoli VLO1 sono molto profondi, su ghiaie sabbioso-ciottolose mediamente alterate, con scheletro da assente a scarso, a tessitura media, reazione subacida, talvolta neutra in profondità, saturazione bassa, AWC molto alta, con drenaggio buono e permeabilità moderatamente bassa. [] Morfologia: Subpianeggiante di terrazzo intermedio; Drenaggio: Buono; Permeabilità: Moderata.			
	TCC1 (NUM_UC 282)	Il pedopaesaggio è quello della superficie rappresentativa dell'alta pianura ghiaiosa a morfologia subpianeggiante con quota media di 160 m. s.l.m. e pendenza media del 0,3% e con evidenti tracce di paleoidrografia a canali intrecciati, con substrati ghiaiosi limosi con sabbia, non calcarei. L'uso del suolo prevalente è costituito da seminativi. I suoli TCC1 sono profondi su substrato sabbioso con scheletro molto abbondante, scheletro abbondante, tessitura moderatamente grossolana, con reazione neutra, saturazione bassa o molto bassa in superficie, media e alta in profondità, AWC bassa. Morfologia: Subpianeggiante; Drenaggio: Buono; Permeabilità: Moderata.			
LC1	SAM1 (NUM_UC 285)	Il pedopaesaggio è quello della superficie rappresentativa dell'alta pianura ghiaiosa a morfologia subpianeggiante e con evidenti tracce di paleoidrografia a canali intrecciati, con quota media di 179 m. s.l.m. e pendenza media del 0,3%, con substrati sabbiosi limosi con ghiaia, calcarei. L'uso del suolo prevalente è costituito da seminativi. I suoli SAM1 sono molto profondi, su substrato sabbioso con ghiaia abbondante, calcareo, con scheletro scarso fino a 80 cm, abbondante al di sotto, a tessitura media o moderatamente grossolana, con reazione subacida, saturazione da media ad alta, AWC moderata, sono suoli non calcarei. Morfologia: Subpianeggiante; Drenaggio: Buono; Permeabilità: Moderata.			
	QUI1 (NUM_UC 287)	Il pedopaesaggio è quello della piana fluvioglaciale e fluviale costituente il livello fondamentale della pianura formatasi per colmata, con superfici ondulate o subpianeggianti di transizione ai principali sistemi fluviali costituite da materiali grossolani; si presentano lievemente ribassate e delimitate da orli di terrazzi convergenti, con quota media di 149 m. s.l.m. e pendenza media del 0,2%, con suoli sviluppatisi su sabbie ben gradate con ghiaia, calcaree. L'uso del suolo prevalente			

12000		
		è costituito da incolti produttivi e da seminativi avvicendati. I suoli QUI1 sono da sottili a molto sottili limitati da orizzonti a scheletro molto abbondante, con substrato ciottoloso, scheletro molto abbondante, a tessitura da grossolana a moderatamente grossolana, calcarei, reazione subalcalina, saturazione alta, AWC bassa. Morfologia: Pianeggiante o leggermente ondulata; Drenaggio: Moderatamente Rapido; Permeabilità: Moderata.
LC2	RSO1 (NUM_UC 288)	Il pedopaesaggio è quello della superficie rappresentativa dell'alta pianura ghiaiosa su superfici antiche prive di dislivelli morfologici significativi in continuità con quelle modali, con quota media di 177 m. s.l.m. e pendenza media del 0,4%, con suoli sviluppatisi su depositi colluviali o alluvio colluviali nelle fasce alla base dei versanti su substrati ghiaiosi a matrice sabbioso-limosa, non calcarei. L'uso del suolo prevalente è il prato permanente asciutto. I suoli RSO1 sono molto profondi su ghiaie a matrice sabbioso limosa, non calcaree e mediamente alterate, con coperture fini di origine colluviale (60-120 cm) nelle fasce alla base dei versanti, scheletro comune fino a 100 cm, abbondante al di sotto, con tessitura media in superficie, media o moderatamente grossolana in profondità, reazione subacida, in genere neutra oltre 1 metro, saturazione bassa o molto bassa in superficie, bassa o media in profondità, AWC alta. Morfologia: Subpianeggiante lievemente depressa di terrazzo intermedio; Drenaggio: Buono; Permeabilità: Moderata.
VI6	FNM3 (NUM_UC 267)	Il paesaggio è quello delle valli alluvionali oloceniche, dove sono stati rilevati nelle piane alluvionali inondabili recenti dei corsi d'acqua centro orientali dai fiumi Seveso all'Adda (torrenti Curone e Molgora), con quota media di 234 m. slm e pendenza media del 0,9%, a substrato da limoso a ghiaioso, non calcareo. L' uso del suolo prevalente è il seminativo avvicendato. I suoli FNM3 sono molto profondi a tessitura media con scheletro comune o frequente fino a 100 cm, abbondante al di sotto, reazione neutra, subacida in superficie, saturazione media, CSC alta, AWC alta. Morfologia: Superfici subpianeggianti corrispondenti alle piane alluvionali delle valli più incise, comprese tra i terrazzi antichi e le fasce maggiormente inondabili limitrofe ai corsi d'acqua, da cui sono generalmente separate da gradini morfologici; Drenaggio: Buono; Permeabilità: Moderata.

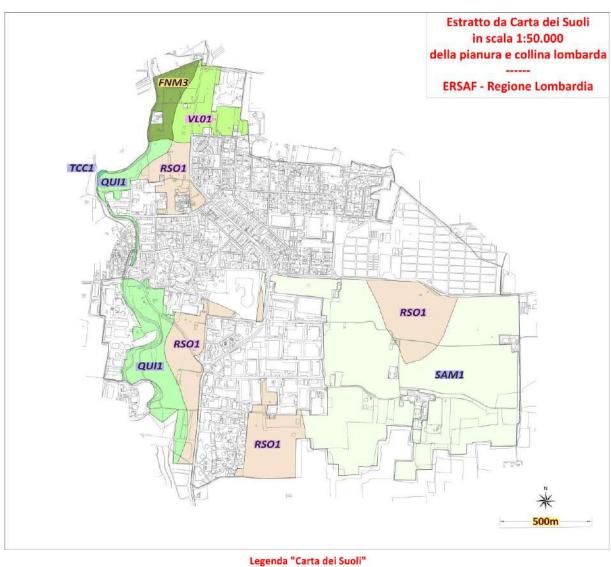


Fig. 4 - Carta pedologica – estratto da Carta dei Suoli ERSAF – Regione Lombardia (fuori scala).

4.4 Aspetti geotecnici

I dati riguardanti la composizione e le caratteristiche geotecniche dei terreni costituenti il primo sottosuolo

del territorio comunale di Burago di Molgora sono stati ricavati considerando i dati derivanti da indagini

geognostiche precedentemente effettuate per specifici interventi all'interno del comune.

In totale sono raccolte n. 131 prove geognostiche da circa 24 studi/relazioni precedenti, le ubicazioni delle

prove sono tutte riportate in Tav. 2 (estratto in Fig. 12) mentre in Allegato 1 si riporta la documentazione

completa. Le indagini geognostiche raccolte comprendono:

- n.105 Prove Penetrometriche Dinamiche e valutazioni medie dei Parametri Geotecnici (All. 1 - Parte 1)

- n.14 Prove Penetrometriche Dinamiche Standard SPT in foro (All. 1 - Parte 2)

- n.2 Prove Penetrometriche Statiche CPT (All. 1 - Parte 3)

- n.5 Trincee / Scavi esplorativi (All. 1 - Parte 4)

- n.**5** Sondaggi / Stratigrafie (All. 1 - Parte 5)

In Tav. 2 sono poi riportati i profili più rappresentativi del sito d'indagine oppure i profili che descrivono la

probabile presenza di "occhi pollini", sono altresì riportati tutti i profili in Allegato 1.

Di seguito in Tabella 1 sono raccolte, in sintesi, le informazioni bibliografiche sulle indagini geognostiche

effettuate a supporto dei progetti specifici, riassumendo codice d'indagine, indirizzo del sito, autore dello

studio, data, numero e tipo di prove effettuate e sigla identificativa utilizzata in Tav. 2.

Nelle indagini IGT16, IGT19 e IGT23 sono state effettuate solo prove geofisiche, non geognostiche.

In linea generale emerge come per i depositi Rissiani e Mindelliani l'elevata percentuale di materiale fine

limoso argilloso, abbondante soprattutto nei primi metri di sottosuolo conferisca a queste unità geologiche

pessime proprietà geotecniche, inoltre in queste unità sussiste il pericolo concreto di riscontrare la presenza

di "occhi pollini".

I dati illustrati sono il risultato di indagini geognostiche ed analisi geotecniche effettuate nel corso degli anni

sul territorio comunale. Preme sottolineare che i valori riportati sono sito specifici dell'area d'indagine e non

vanno assolutamente utilizzati come valori di riferimento per calcoli geotecnici, che dovranno essere basati

su specifiche indagini in sito e/o laboratorio.

Sulla base dei dati pregressi e dei nuovi dati acquisiti si conferma per i terreni costituenti il sottosuolo del

territorio comunale una spiccata eterogeneità areale per quanto riguarda le caratteristiche geotecniche.

PEC: geoinvest@legalmail.it

Tabella 1 - Informazioni bibliografiche e identificative sulle indagini **geognostiche** raccolte.

Cod. Indagine	Indirizzo	Autore	Data	Penet. Din.	SPT in foro	CPT	Trincee	Sondaggi	Sigla prove in Tav. 2
IGT0	Scuole Medie	Geoinvest s.r.l.	02/1986	7			2		P1-P7, TrA-TrB
IGT1	Piano di Lottizzazione PEC1a	Geoinvest s.r.l.	02/2000	13					P8-P20
IGT2	Via XXV 04/	Studio Geologico Tecnico Lecchese	01/2005	5					P21-P25
IGT3	Via Martin Luther King	Geoplanet Studio Geologico	03/2005	4					P26-P29
IGT4	Via Donizzetti	Dott. Geol. Riccardo Cortiana	12/2001	9					P30-P38
IGT5	Via Mazzini	Studio Geoplan	01/2003	5					P39-P43
IGT6	AT 1, tra S.P.211 e S.P.215	Fusina s.r.l.	04/2013	8					P44-P51
IGT7	AT 3, via Dante	Studio Geoplan	09/2013	1					P52
IGT8	AT 4, via E. De Amicis - S.P.215	GeoArbor studio	01/2022	6			3		P53-P58, TrC-TrE
IGT9	Via Leopardi n. 16	Geotecno srl	03/2019	2					P59-P60
IGT10	Via Luigi Galvani n.5	IPOGEO Studio Geologico		2					P61-P62
IGT11	Via dell'Industria 3/A- 3/B	GEO GROUP s.r.l.	05/2019			2			Ps1-Ps2
IGT12	P.zza Matteotti	Dott. Ing. Cristiano Tomasi	05/2020	3					P63-P64
IGT13	via Galileo Galilei n. 15	FAPA engineering srl	07/2020	1					P66
IGT14	via Galileo Galilei	IDROTECNA	07/2020	4					P67-P70
IGT15	via Galvani 3	GEOPLAN s.r.l.		3					P71-P73
IGT16	presso stabilimento Salchi Metalcoat	GEO GROUP S.R.L.	07/2020						
IGT17	via Verdi	Dott. Geol. Gianbattista Fidanza	11/2020	3					P74-P76
IGT18	via Leopardi	IDROTECNA	05/2020	1					P77
IGT19	Via Meucci 1	GEOCONSULT	01/2022						_
IGT20	via Primo Villa 10	Geotecno srl	02/2011	4					P78-P81
IGT21	via F. Turati	Studio Geologico Ballabio	12/2021	1					P82
IGT22	via Galileo Galilei n. 13	Geotest s.r.l.	00/0015	6					P83-P88
IGT23	via Aldo Moro AT1 via Turati	Fusina srl ERA, Geol.	02/2019	3					P89-P91
IGT25	via Caravaggio n. 24	Umberto Locati Dott. Geol. Alessandro Ratazzi	03/2022	2					P92-P93
IGT26	via E. Fermi n. 1	Dott. Geol. Alessandro Ratazzi	01/2022	6					P94-P99
IGT27	stabilimento Salchi Metalcoat	GEOGROUP	07/2021	6	14			2	P100-P105, S1-S2, P _{foro} 1-14
IGT28	via E. Fermi n.1	Dott. Geol. Alessandro Ratazzi	09/2021					3	S3-S5
IGT29	Banca Dati Geologica del Sottosuolo	Geoportale Lombardia	12/2023	39				3	P106-P144, S6-S7-S8

via della Conciliazione, 45/A - 29122 Piacenza Italia telefono 0523 593622 - fax 0523 593640 www.geoinvest.it - geoinvest@geoinvest.it PEC: geoinvest@legalmail.it

4.4.1 Problematica "Occhi Pollini"

Il territorio di Burago di Molgora è interessato da un problema geotecnico peculiare dell'area brianzola: nei

conglomerati e nei depositi non cementati sono presenti cavità di dimensioni variabili che possono portare a

sprofondamenti del terreno e a cedimenti e lesioni degli edifici sovrastanti.

Il fenomeno, noto a livello locale con il termine di "occhi pollini", può essere distinto in realtà in tre diverse

tipologie principali che hanno caratteristiche leggermente diverse. La prima tipologia è costituita da cavità

presenti in conglomerati (ceppo s.l.), la seconda è data da cavità, anche di diversi metri cubi di volume,

interamente comprese in depositi non cementati, mentre l'ultima è costituita da gallerie in genere

superficiali.

Tra gli operatori del settore e la gente locale è inoltre invalso l'uso di identificare con il termine "occhi pollini"

qualunque situazione in cui vi siano, nel sottosuolo, sedimenti molto soffici e con scadenti caratteristiche

geotecniche. Tipicamente, rientrano in questa categoria terreni con risposta $N_{(30)}$ < 3 alle prove

penetrometriche dinamiche, mentre negli occhi pollini veri e propri, che portano allo sviluppo di cavità vuote,

si può assistere all'affondamento libero delle aste.

La variabilità di condizioni in cui gli occhi pollini possono presentarsi, legata anche alla complessità della

costituzione del sottosuolo, è notevole. In particolare, è stata riscontrata una predisposizione alla genesi degli

"occhi pollini" in luoghi o aree in cui si è avuto un cambiamento nella circolazione idrica sotterranea, sia per

abbassamenti/innalzamenti della falda, sia per immissione concentrata di acqua in sottosuolo, ad esempio

tramite pozzi perdenti. È importante sottolineare che, una volta innescato, il fenomeno può avere

un'evoluzione molto rapida con formazione improvvisa di pozzi di crollo.

L'ampio spettro di contesti in cui gli occhi pollini possono generarsi fa sì che sia difficile determinare, a priori,

dove essi siano presenti. Si possono individuare solo zone in cui è possibile che siano presenti occhi pollini

ma non indicare il sito esatto.

L'individuazione tramite indagini geotecniche non è facile; le prove penetrometriche sono eseguite in genere

con una maglia troppo ampia per individuare e descrivere con precisione il fenomeno; si tenga presente,

infatti, che anche occhi pollini molto piccoli possono potenzialmente ingrandirsi una volta che è stata

costruita l'opera e causare danni notevoli. Inoltre, la possibilità che le cavità siano parzialmente o totalmente

riempite di materiale di crollo o sedimenti derivanti dalla circolazione idrica sotterranea può rendere difficile

il riconoscimento delle cavità stesse solo dall'analisi delle prove penetrometriche.

Per iniziare a mettere ordine nelle informazioni geognostiche disponibili in Comune di Burago di Molgora si

è redatta la Tav. 2 – "Tavola geologico-tecnica e delle indagini territoriali disponibili per la definizione del

fenomeno degli "occhi pollini" (estratto in Fig. 12), andando a evidenziare nei profili delle prove i tratti (>20 cm, prof. > 1 m p.c.) con numero di colpi minori di 3, al fine di indicare settori molto sciolti riconducibili alla probabile presenza di occhio pollini.

Nella stessa tavola è stato sovrapposto il tematismo ricavato dalla Tavola 8 "Assetto idrogeologico" del PTCP della Provincia di Monza e Brianza (Fig. 5) in cui è evidenziato per tutto il territorio provinciale il grado di suscettività al fenomeno degli "occhi pollini". Il grado di suscettività nel territorio di Burago di Molgora varia da Molto alto (colore rosa) ad Alto (color beige) fino a Moderato (colore bianco).

Dalla tavola è possibile verificare come i profili delle prove penetrometriche possono cambiare sensibilmente anche tra le prove eseguite a distanze tra loro contenute. L'estrema variabilità degli occhi pollini in termini di profondità, dimensioni e sviluppo areale può quindi portare a sottostimare o sovrastimare il problema.

Per l'approfondimento del fenomeno degli "occhi pollini", il PTCP ha redatto apposite Linee Guida (riportate nel capitolo Fattibilità Geologica, a cui si rimanda). Tale tabella, che assume un valore prescrittivo e che è riportata integralmente nelle Norme di Piano, schematizza le indagini da eseguire al fine di determinare l'eventuale presenza di "occhi pollini" definendo potenzialità e limiti d'impiego, e indica le buone pratiche progettuali per evitare l'innesco o l'amplificazione del fenomeno. A tal fine, come ribadito e prescritto nelle specifiche linee guida del PTCP (Relazione), nelle aree con grado di suscettività Alto e Molto alto è vietato utilizzare i pozzi perdenti come modalità di smaltimento delle acque nel terreno.

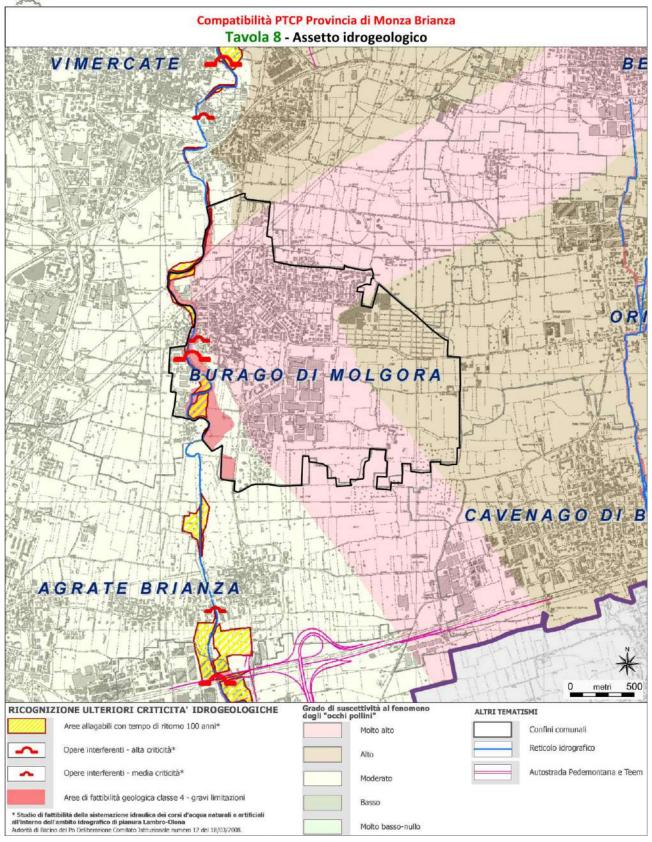


Fig. 5 - PTCP Estratto da Tavola 8 – Assetto idrogeologico.

R4251 - 27/129

Nel dicembre 2019 "Bria", per conto di BrianzAcque s.r.l., ha redatto lo studio pilota di approfondimento

"Aggiornamento del quadro conoscitivo relativo alla suscettività del territorio della provincia di Monza e

Brianza al fenomeno degli occhi pollini".

Lo studio ha raccolto capillarmente le informazioni geologiche disponibili presso 15 comuni selezionati

interessati dalla sperimentazione (settore est della provincia), integrandole con quelle già presenti nella

Banca Dati Geologica di Sottosuolo di Regione Lombardia (BDGS). I punti di indagine dedotti dalle relazioni

ammontano a più di 1200, in particolare per il comune di Burago di Molgora sono state raccolte ed esaminate

69 prove suddivise in 3 indagini dirette (sondaggi) e 66 indirette (prove penetrometriche, indagini geofisiche

etc.).

Alla conclusione delle attività del primo protocollo di collaborazione, è stato deciso di estendere all'intero

territorio provinciale l'aggiornamento del quadro conoscitivo, attraverso un nuovo protocollo, sottoscritto

con ATO e Brianzacque s.r.l. nel febbraio 2020.

Il nuovo protocollo (fase 2), sempre con il coordinamento tecnico ed operativo della Provincia, ha permesso

l'estensione delle attività di analisi ai 40 Comuni esclusi dal precedente studio del 2018, quest'ultimo aveva

considerato i comuni che rientrano nel perimetro blu scuro in Fig. 8. La fase 2 di tale studio si è conclusa nel

giugno 2023. Dai materiali raccolti sono state estratte tutte le indagini geognostiche utili allo studio del

fenomeno (circa 4.000 punti d'indagine).

Dall'analisi dei dati, gli autori hanno potuto osservare che nel settore relativo alla fase 1 la presenza degli

occhi pollini mostra una distribuzione estremamente variabile rispetto alla profondità (Fig. 6), generalmente

compresa tra piano campagna e oltre 23 m di profondità, con un massimo nella fascia 3.5-8 m da p.c..

Nel settore relativo alla fase 2 la situazione è simile (Fig. 7). Anche in questo caso la massima concentrazione

di occhi pollini è compresa tra i 3,5 e i 9 m circa. Si osserva che la profondità massima è maggiore e anche in

questo caso il numero di occhi pollini oltre i 19 m è estremamente ridotto.

Lo spessore degli occhi pollini è estremamente variabile, passando dai 30 cm occasionali di alcuni livelli a

resistenza nulla o ridotta rinvenuti in profondità, a spessori di oltre 10 m, che costituiscono sicuramente livelli

con ridotta resistenza e non cavità vere e proprie.

Dall'analisi di dettaglio compiuta gli autori hanno individuato 4 classi di pericolosità agli occhi pollini (alta H4,

media H3, moderata H2 e molto bassa H1) raffinando il modello già proposto e incluso nel vigente PTCP di

Monza e Brianza (estratto della carta in Fig. 8).

GEOINVEST s.r.
Geologia-Geofisica

Le classi sono state definite in base al contesto geologico di superficie e di sottosuolo ricostruito in base ai dati disponibili e tenendo in considerazione il modello genetico di sviluppo delle cavità nel quale gioca un ruolo fondamentale la presenza in superficie o nel sottosuolo di depositi con alterazione medio elevata e la presenza di conglomerato. A valle della suddivisione del territorio in aree con differente grado di pericolosità, gli autori hanno provveduto ad una mappatura preliminare del rischio connesso al fenomeno degli occhi pollini (Fig. 9).

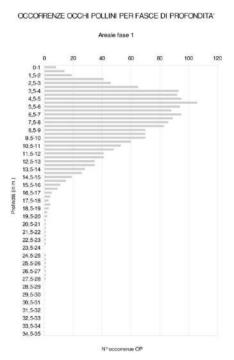


Fig. 6 - Distribuzione degli occhi pollini in base alle classi di profondità (in metri dal p.c.) (Fase 1, Relazione Illustrativa 2023).

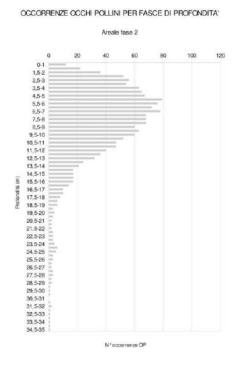


Fig. 7 - Distribuzione degli occhi pollini in base alle classi di profondità (in metri dal p.c.) (Fase 2, Relazione Illustrativa 2023).

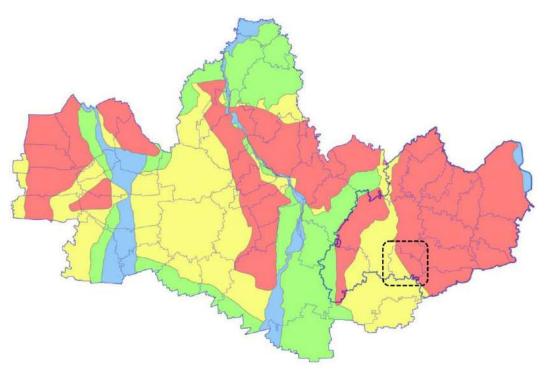


Fig. 8 - Carta della pericolosità agli OP della provincia di Monza e della Brianza. In rosso classe H4 (alta), in giallo H3 (media), in verde H2 (moderata), in azzurro H1 (bassa). Nel perimetro blu scuro i comuni oggetto della sperimentazione 2018. Dettaglio sul comune di Burago di Molgora. (Relazione Illustrativa 2023).

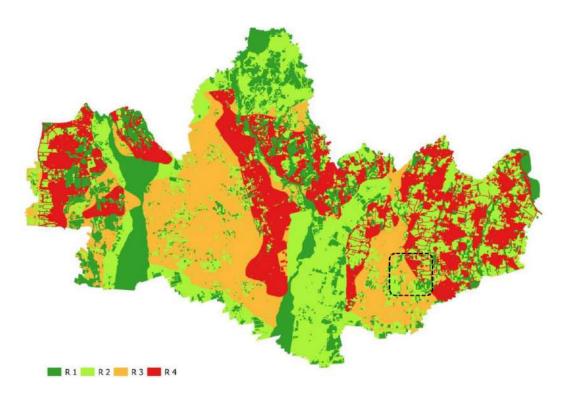


Fig. 9 - Carta del rischio agli OP della provincia di Monza e della Brianza. In rosso classe R4 (rischio alto), in arancio classe R3 (media), in verde R2 (moderata), in verde chiaro R1 (bassa). Dettaglio sul comune di Burago di Molgora. (Relazione Illustrativa 2023).

4.4.2 Fenomeni di Sinkhole

Al fine di rispondere alla d.g.r. 15 dicembre 2022 – n. XI/7564 (Integrazione dei criteri ed indirizzi per la

definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio relativa

al tema degli sprofondamenti) è stata effettuata una ricerca storica e bibliografica relativa ai fenomeni di

sprofondamento avvenuti sul territorio di Burago di Molgora.

Sono state verificate le fonti elencate di seguito come suggerito dalla normativa; tuttavia, nessuna di queste

ha evidenziato zone di sprofondamento all'interno del territorio comunale:

- Inventario dei fenomeni franosi (IFFI) da Geoportale Lombardia,

Database nazionale Sinkhole ISPRA.

EMGS (Servizio Europeo di Movimento del Suolo) è un servizio che fornisce informazioni affidabili sul

movimento del suolo naturale e antropogenico negli Stati partecipanti a Copernicus e oltre i confini nazionali,

con precisione millimetrica quindi può essere utilizzato come indicatore di zone di sprofondamenti.

L'EGMS si basa sull'analisi interferometrica multitemporale delle immagini radar di Sentinel-1 a piena

risoluzione. Questa tecnica consente di identificare punti di misura affidabili per i quali vengono estratti i

valori di velocità del movimento del suolo e le serie temporali di deformazione. Tali punti di misura

coincidono solitamente con edifici, strutture artificiali e aree prive di vegetazione in genere. I dati sono

aggiornati annualmente. I dati analizzati resi disponibili dall'EGMS si riferiscono al periodo 2018-2022.

In Fig. 10 sono mostrati i dati 'Ortho', in particolare la componente verticale campionati su griglia di 100 m.

In Fig. 11 vengono mostrati i dati 'Calibrated', mappe della velocità della linea in orbite ascendenti e

discendenti riferite a un modello derivato dai dati delle serie temporali dei sistemi satellitari di navigazione

globale. I prodotti calibrati sono assoluti, non essendo più relativi ad un punto di riferimento locale.

In entrambe le figure è mantenuta la stessa scala di valori (-5 mm/anno (rosso) – +5 mm/anno (blu)) e da

entrambe le tipologie di dato è possibile verificare che all'interno del territorio in esame non sono presenti

evidenti aree di sprofondamento (zone arancioni/rosse).

GEOINVEST s.r.
Geologia-Geofisica

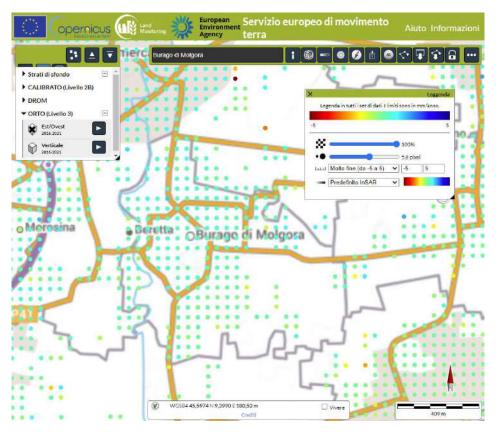


Fig. 10 - Componenti verticali campionate ogni 100m (fonte EGMS – periodo di acquisizione dei dati 2018-2022).

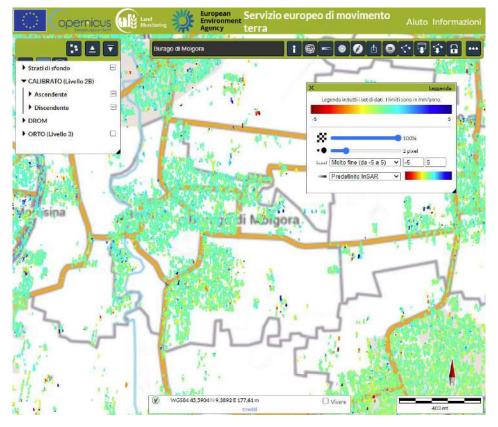


Fig. 11 - Componenti Ascending e Descending (fonte EGMS- periodo di acquisizione dei dati 2018-2022).

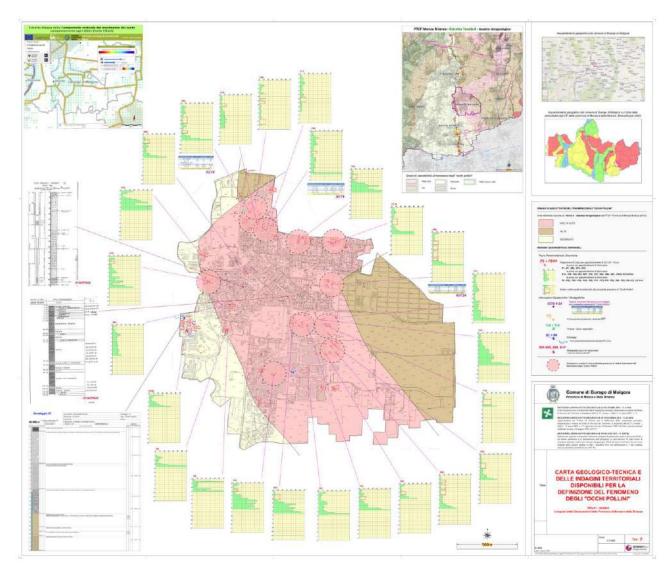


Fig. 12. Carta delle indagini territoriali disponibili per la definizione del fenomeno degli Occhi Pollini (Tav. 2, fuori scala).

5 ASSETTO IDROGEOLOGICO

5.1 La struttura idrogeologica a grande scala

La ricostruzione della struttura idrogeologica ha la finalità di individuare la geometria e la litologia dei differenti corpi acquiferi, cioè di quei sedimenti da cui, per le loro caratteristiche di permeabilità e spessore, sono estratte ed utilizzate le acque nella pianura. Per la definizione a grande scala degli orizzonti acquiferi si rimanda alla pubblicazione di riferimento "Geologia degli Acquiferi Padani della Regione Lombardia", edita da Regione Lombardia-Eni. Tale studio, basato sull'applicazione della stratigrafia sequenziale allo studio dei depositi alluvionali della Pianura Padana, ha permesso di riconoscere quattro unità idrostratigrafiche definite da barriere di permeabilità ad estensione regionale (Gruppi Acquiferi A-B-C-D, in Fig. 13).

Il Gruppo Acquifero A è attualmente sfruttato in modo intensivo, ancorché interessato da fenomeni di inquinamento; i Gruppi Acquiferi B e C sono sfruttati nelle aree di margine del bacino. Il Gruppo Acquifero D, isolato rispetto alla superficie per gran parte della sua estensione, è sfruttato solo localmente (Fig. 14).

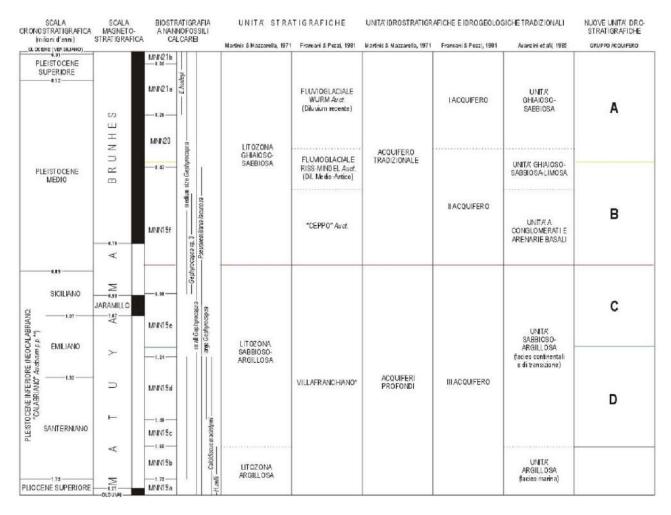


Fig. 13. Schema dei rapporti stratigrafici degli acquiferi in Lombardia.

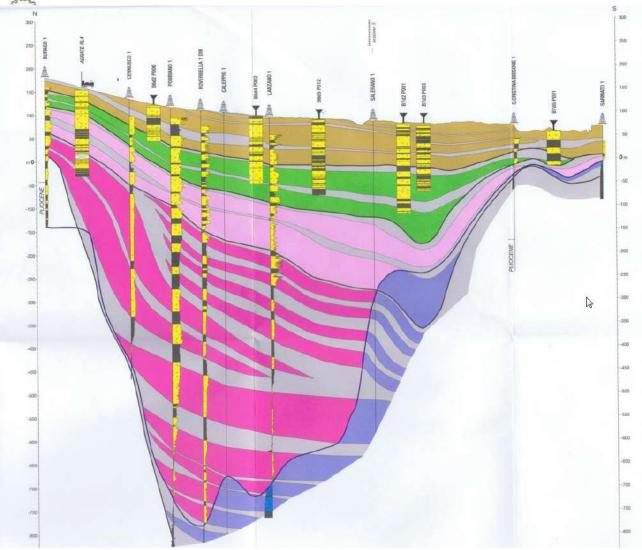


Fig. 14. Sezione idrogeologica a scala di bacino (da pubblicazione Regione Lombardia - Eni).

5.2 Idrogeologia locale

Sulla base delle caratteristiche litologiche dedotte dalle stratigrafie dei pozzi esistenti nel territorio di Burago di Molgora e nei comuni limitrofi, si riconoscono nel sottosuolo varie unità idrogeologiche, distinguibili per la loro omogeneità di costituzione e di continuità orizzontale e verticale. La loro distribuzione è sintetizzata nelle sezioni idrogeologiche 1 e 2 derivanti dal PGT pregresso presentate di seguito in Fig. 15 ed inserite all'interno della Tav. 3 (Carta Idrogeologica). Le tracce delle sezioni passanti per alcuni pozzi pubblici e privati del territorio sono anch'esse riportate in Tav. 3. Dalle Sezioni 1 e 2 è possibile riscontrare la successione delle unità idrogeologiche, dalla più profonda alla più superficiale, secondo il seguente schema:

- (1) UNITÀ DELLE ALTERNANZE ARGILLOSO SABBIOSE: costituita da potenti successioni di argille grigie e gialle, talora fossilifere e torbose, caratterizzate da una discreta continuità laterale, a cui si

alternano subordinati livelli di sabbie e ghiaie sabbiose ad alto contenuto argilloso. Nei livelli più grossolani e permeabili sono presenti falde idriche intermedie e profonde di tipo confinato, captate dai pozzi pubblici presenti sul territorio comunale. Dall'esame delle stratigrafie dei pozzi e dall'interpretazione generale delle sezioni idrogeologiche in corrispondenza dei pozzi pubblici, il tetto dell'unità viene mediamente individuato alla profondità di circa 40-50 m ed è delimitato da una superficie erosionale irregolare ed ondulata costituita da limi sabbiosi gialli che rappresentano un marker stratigrafico ben riconosciuto in tutto il territorio in esame. *Ambiente di deposizione: marino transizionale.*

- (2) UNITÀ DEI CONGLOMERATI PREVALENTI: costituita prevalentemente da conglomerati variamente cementati con intercalazioni sabbioso ghiaiose ad elevata trasmissività. All'interno dell'unità sono presenti orizzonti a bassa permeabilità rappresentati da sabbie limose, limi e argille, generalmente caratterizzati da una limitata estensione laterale. L'unità, presente con continuità in tutto il territorio con spessori medi di 30 ÷ 40 m e massimi di 60 m in corrispondenza di paleoalvei sepolti, è sede dell'acquifero principale di tipo libero, caratterizzato da una elevata permeabilità data dalla porosità, dalla fratturazione e dal carsismo. La soggiacenza varia da circa 25 a 30 m dal piano campagna in funzione delle oscillazioni stagionali e pluriannuali del livello piezometrico. L'elevata vulnerabilità intrinseca di tale falda è generalmente testimoniata dalle scadenti caratteristiche qualitative delle acque, che presentano talora elevati valori di nitrati. *Ambiente di deposizione: continentale fluviale*.
- (3b) UNITÀ DELLE GHIAIE ALTERATE SUPERFICIALI: costituita da ghiaie e sabbie alterate con conseguente trasformazione in sedimenti a prevalente granulometria fine (limi e argille) con sparsi clasti. La geometria dell'unità è lenticolare con spessori variabili da circa 5 a oltre 10 m, privo di circolazione idrica significativa. *Ambiente di deposizione: continentale fluvioglaciale.*
- (3a) UNITÀ DELLE GHIAIE NON ALTERATE SUPERFICIALI: costituita da ghiaie e sabbie non alterate a supporto di matrice. La geometria dell'unità è lenticolare con spessori variabili. *Ambiente di deposizione: continentale fluviale/fluvioglaciale.*

Sezione 1

Sezione 2

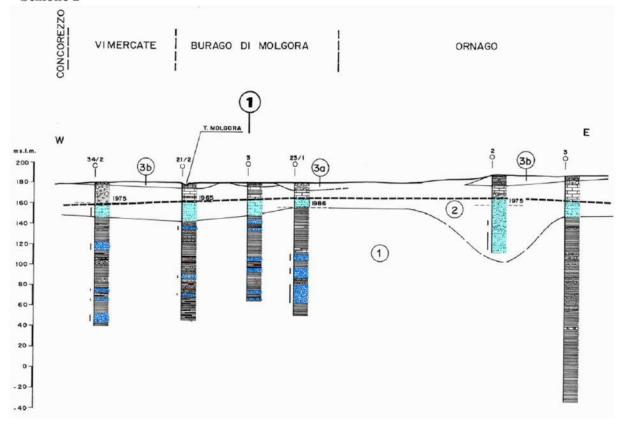


Fig. 15 – Sezioni Idrogeologiche: Sezione 1 traccia N-S, Sezione 2 traccia W-E (fonte PGT pregresso).

5.3 Pozzi pubblici sul territorio comunale

Nel territorio comunale di Burago di Molgora sono presenti 7 pozzi pubblici acquedottistici attivi le cui profondità sono riassunte in Tabella 2.

Cod. SIF Pozzo	Destinazione	Ubicazione	Profondità (m)
150370001	Acquedotto	Cascina Magana I	92.0
150370002	Acquedotto	Via Don Minzoni I	85.0
150370003	Acquedotto	Via Martiri della Libertà I	115.0
150370004	Acquedotto	Via per Vimercate I	113.0
150370005	Acquedotto	Via per Vimercate II	132.0
150370008	Acquedotto	Cascina Magana II	125.0
150370015	Acquedotto	Strada Provinciale 215	118.0

Tabella 2 – Pozzi pubblici attivi sul territorio di Burago di Molgora con relative profondità.

In Tabella 3 sono riportate le misure di soggiacenza in serie storica disponibili reperite presso il gestore.

Cod. SIF		2018				2019 2020			2021				
Pozzo	Ge	nnaio	Ot	tobre	sett	tembre	Nov	vembre	fel	obraio	nov	embre	
Livello	statico	dinamico	statico	dinamico	statico	dinamico	statico	dinamico	statico	dinamico	statico	dinamico	
0150370001	27,00	27,30	23,45	23,80	24,20	25,30	22,80	23,20	21,70	21,90	23,45	23,80	
0150370008	24,20	24,50	21,50	22,15	23,80	25,00	21,55	21,70	20,79	21,05	21,50	22,15	

Cod. SIF			20	2023							
Pozzo	Marzo		Luglio		Settembre		ge	nnaio	aprile		
Livello	statico	dinamico	statico	dinamico	statico	dinamico	statico	dinamico	statico	dinamico	
0150370001	24,30	24,55	25,00	25,30	25,45	25,85	25,80	26,40	26,00	26,55	
0150370008	21,35	22,90	21,70	3	22,15	23,10	22,30	23,45	22,50	23,60	

Tabella 3 - Soggiacenza (statica e dinamica) registrata nei pozzi ad uso acquedottistico dal 2018 al 2023 nei pozzi 0150370001 e 0150370008 (Fonte BrianzAcque).

Tutte le stratigrafie dei pozzi pubblici attivi sono allegate al presente documento (Allegato 2), sono altresì riportate nello stesso allegato anche le stratigrafie esistenti di ex pozzi potabili identificabili con i vecchi codici SIF: 150370006, 150370010, 150370014).

I siti dei pozzi pubblici presenti sul portale provinciale sono stati in parte riposizioni a scala di maggior dettaglio e riportati in Tav. 3 (estratto in Fig. 23).

Per un quadro completo del sistema idraulico del comune in esame si riporta la mappa della rete acquedottistica estratta dal WebGis di BrianzAcque (estratto in Fig. 16) inserita altresì nella Carta Idrogeologica (Tav. 3).

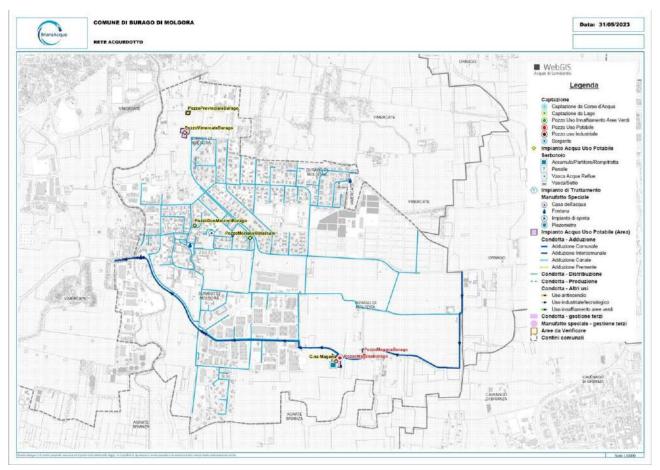


Fig. 16 – Estratto fuori scala della cartografia della rete acquedottistica (fonte WebGis BrianzAcque).

5.4 Piezometria

La ricostruzione piezometrica della falda freatica è stata ottenuta a partire dai dati piezometrici presenti nel portale SIF della Provincia di Monza opportunamente elaborati.

Dai risultati ottenuti, evidenziati nella Tav. 3, si evince che la superficie piezometrica presenta una soggiacenza media di circa 14-20m, con una quota piezometrica compresa tra i 172 m s.l.m. nel margine nord-occidentale e 154 m s.l.m. per quello sud, la direzione di deflusso risulta marcatamente N-S e il gradiente è mediamente compreso tra i valori di 5‰ e 7‰.

Per caratterizzare l'andamento nel tempo della superficie piezometrica, è stata graficizzata l'intera serie storica delle misure di livello periodicamente rilevate dal C.A.P. nel pozzo 041 di Vimercate (MI), situato circa 2 km a NE rispetto al territorio di Burago di Molgora (Fig. 17, fonte PGT 2006). La serie storica dei dati comprende un periodo di 25 anni durante il quale si evidenzia un progressivo e costante abbassamento della superficie piezometrica verificatosi dall'inizio degli anni '80 fino al primo semestre del 1992, in relazione ad un'alimentazione deficitaria degli acquiferi registrata a livello regionale, determinata dagli scarsi apporti meteorici di tale periodo. L'escursione negativa media del livello di falda da 1980 al 1992 è valutabile

nell'ordine di circa 13 m. Dalla seconda metà del '92, parallelamente ad un aumento della ricarica efficace (maggiore piovosità), che ha generalmente interessato l'alta e media pianura lombarda, si assiste ad un sensibile recupero piezometrico registrato fino a tutto il 1997. A partire dal 1998 si registra una nuova tendenza alla progressiva decrescita dei livelli, interrotta dall'innalzamento piezometrico conseguente agli eventi alluvionali dell'ottobre 2000 e del novembre 2002. I valori del livello piezometrico ritornano ad essere simili a quelli registrati nei primi anni '80. Le scarse precipitazioni che hanno caratterizzato il regime pluviometrico del 2003 hanno determinato un nuovo abbassamento dei livelli di falda registrato sino agli ultimi dati disponibili (dicembre 2005). La dinamica della falda superiore nell'ultimo ventennio mostra pertanto il prevalere di fattori naturali di carica e ricarica legati all'andamento dei regimi meteorici, rispetto all'entità dei prelievi in atto sul territorio, generalmente stazionari o in lieve aumento.

Fig. 17 – Andamento delle Quote Piezometriche (Pozzo Vimercate).

Dati storici più recenti sono indicati nel capitolo precedente in Tabella 3 come misure di soggiacenza. Le misure riguardanti il pozzo SIF 01500370001 e il pozzo SIF 01500370008 sono graficizzate di seguito in Fig. 18.

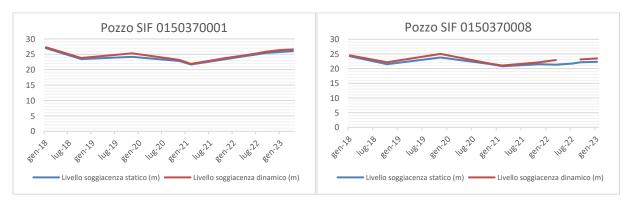


Fig. 18 – Dati soggiacenza statica e dinamica in serie storica dal 2018 al 2022 per i pozzi SIF 001 e 008.

R4251 - 40/129

5.5 Soggiacenza

La soggiacenza rappresenta la profondità alla quale si trova il livello superiore della falda dal piano campagna;

è quindi stata redatta una carta che riporta le aree di ugual soggiacenza. Questa è dunque un'elaborazione

delle curve isopiezometriche considerando inoltre le variazioni puntuali di quota.

La distanza della tavola d'acqua rispetto alla superficie del terreno rappresenta un importante fattore di

vulnerabilità della falda stessa: nel non-saturo, infatti, si svolgono reazioni chimico-fisiche (potere auto

depurante del terreno), che determinano generalmente un'attenuazione del carico inquinante, tanto

maggiore quanto maggiore è il tempo di percorrenza necessario per raggiungere la falda.

In Tav. 3 (miniatura in Fig. 23) sono rappresentate 3 classi di soggiacenza, una ogni 2 metri, da 14 m dal p.c.

a 20 m dal p.c..

5.6 Permeabilità

Nel 2021 BrianzAcque ha redatto lo Studio della permeabilità e infiltrazione nel suolo da cui è stato possibile

estrarre la Carta del potenziale di infiltrazione naturale in superficie riportata in Tav. 3. La Carta del potenziale

di infiltrazione naturale in superficie esprime la capacità dell'acqua di infiltrare attraverso gli strati più

superficiali del terreno, ed è utile per lo studio del rischio idraulico, nonché per la valutazione di strategie di

infiltrazione in superficie.

Il territorio comunale è stato suddiviso in 5 classi di permeabilità:

- VH: > 10⁻² m/s

- H: da 10⁻² a 10⁻³ m/s

M: da 10⁻³ a 10⁻⁴ m/s

- L: da 10⁻⁴ a 10⁻⁵ m/s

- VL: < 10⁻⁵ m/s

La capacità di infiltrazione può variare in modo significativo con la profondità soprattutto in aree in cui i

terreni superficiali sono stati fortemente pedogenizzati o rimaneggiati. Per questo motivo è disponibile nella

suddetta relazione anche la Carta del potenziale di infiltrazione naturale in profondità, per maggiori dettagli

si rimanda allo specifico studio.

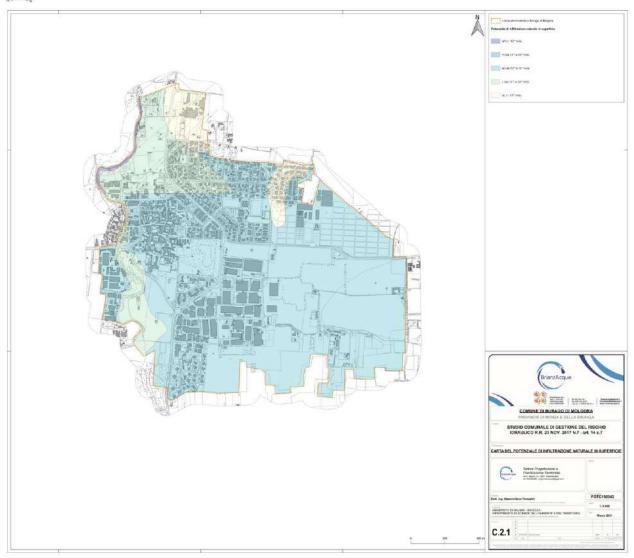


Fig. 19 - Carta del potenziale di infiltrazione naturale in superficie da Studio della permeabilità e infiltrazione nel suolo (BrianzAcque 2021).

5.7 Idrochimica

In Fig. 20 sono riassunti i valori medi dei principali parametri chimici delle acque distribuiti da BrianzAcque nel Comune di Burago di Molgora.

		Û					Α	NALISI	CHIMIC	A E CH	IMICO-	FISICA.	Punto	Preliev	o: Via G	alilei.								r.	_
	Ph (Unità ph)	Conduttività (µS.cm-1 a 20°C	Residuo Secco (mg/l)	Durezza (°F)	Cloruro (mg/l)	Magnesio (mg/l)	Potassio (mg/l)	Nitrato (mg/l)	Sodio (mg/l)	Solfato (mg/l)	Calcio (mg/l)	Manganese (µg/I)	Ferro (µg/l)	Ammonio (mg/l)	Nitrito (mg/l)	Fluoruro (mg/I)	Cadmio (µg/l)	Cromo (µg/I)	Piambo (µg/l)	Alluminio (µg/l)	Nichel (µg/l)	Arsenico (µg/I)	Antimonio (µg/l)	Mercurio (µg/I)	Selenio (µg/I)
Limiti DL31/01	6.5-9.5	2500	1500	50	250			50	200	250		50	200	0.5	0.5	1.5	5	50	10	200	20	10	5	1	10
02/2023	7.3	601	430	32.5	13.9	20.6	1.14	31.9	7.6	28.7	96.1	<5.0	<20	<0.15	< 0.03	<0.15	<1.0	<5.0	<1.0	<20	<3.0	<1.5	<1.0	<0.2	<1
05/2023	7.4	614	439	33.1	14.1	20.8	1.17	31.4	7.7	27.1	98.4	<5.0	<20	<0.15	< 0.03	< 0.15	<1.0	<5.0	<1.0	<20	<3.0	<1.5	<1.0	<0.2	<1.
07/2023	7.4	614	439	33.1	14.1	20.8	1.17	31.4	7.7	27.1	98.4	<5.0	<20	<0.15	<0.03	<0.15	<1.0	<5.0	<1.0	<20	<3.0	<1.5	<1.0	<0.2	<1.
08/2023	7.4	633	453	34.9	15.4	21.4	1.25	33.1	8.7	28.2	104	<5.0	<20	<0.15	< 0.03	<0.15	<1.0	<5.0	<1.0	<20	<3.0	<2	<1.0	<0.2	<1.

Fig. 20. Caratteristiche chimiche e chimico-fisiche distribuite nel Comune di Burago di Molgora (Fonte sito web BrianzAcque).

Ulteriori informazioni sullo stato degli acquiferi sono fornite dal PTUA 2016, che per i due corpi idrici sotterranei IT03GWBISPAMPLO (ISP Idrostruttura Sotterranea Profonda) e IT03GWBISSAPTA (ISS Idrostruttura Sotterranea Superficiale) indica uno stato chimico "scarso" (Fig. 21) nel periodo 2010-2013 dovuto alla presenza naturale di arsenico nelle acque. Nei pressi del confine sud-est del comune di Burago di Molgora, nel territorio del comune di Cavenago di Brianza è presente una stazione di monitoraggio qualitativa dei corpi idrici sotterranei (ISS).

In Fig. 22 lo stato chimico in dettaglio dei due corpi idrici sotterranei che interessano Burago di Molgora.

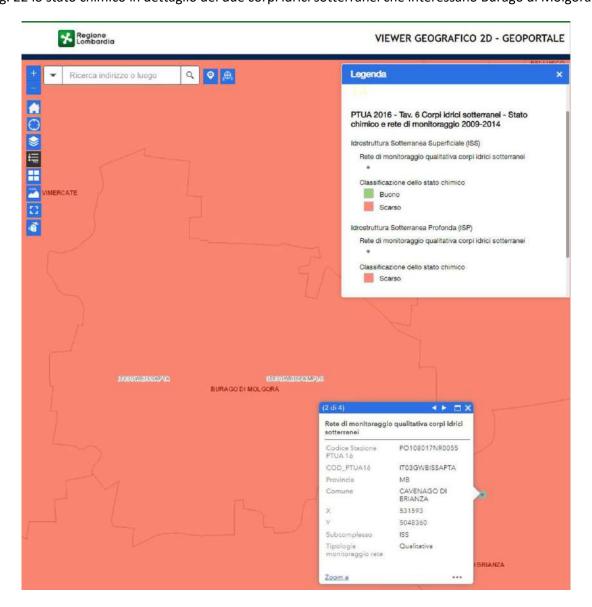


Fig. 21. Caratteristiche chimiche e chimico-fisiche distribuite in Comune Burago di Molgora (fonte Geoportale Lombardia).

Classificazione d	ello stato chimico	Classificazione de	ello stato chimico
OBJECTID	14	COD_PTUA16	IT03GWBISSAPTA
COD_PTUA16	IT03GWBISPAMPLO	Nome Corpo	Corpo idrico sotterraneo
Nome Corpo Idrico	Corpo idrico sotterraneo profondo di Alta e Media pianura Lombarda	Idrico	superficiale di Alta pianura Bacino Ticino - Adda
Stato quantitativo	Buono	Stato quantitativo	Buono
Confidenza SQ	alta	Confidenza SQ	alta
Stato chimico	Scarso	Stato chimico	Scarso
Confidenza SC	alta	Confidenza SC	alta
Sostanze	sì	Sostanze naturali	sì
naturali		Elenco sostanze	Arsenico
Elenco sostanze	Arsenico	Anni	2010-2013
Anni classificazione	2010-2013	classificazione chimica	2010 2010

Fig. 22. Dettaglio dello stato chimico dei due corpi idrici sotterranei che interessano Burago di Molgora (fonte Geoportale Lombardia).

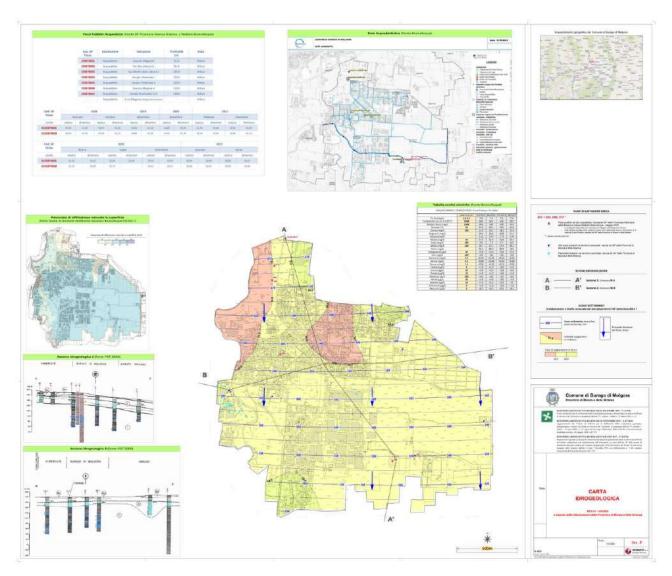


Fig. 23 – Carta idrogeologica (Tav. 3, fuori scala).

5.8 Vulnerabilità

La vulnerabilità rappresenta la facilità con cui un acquifero può essere raggiunto da un inquinante introdotto

sulla superficie del suolo. Maggiore è la vulnerabilità di un acquifero, più facilmente esso potrà essere

contaminato da un carico inquinante rilasciato dalla superficie. La vulnerabilità intrinseca, in particolare,

considera essenzialmente le caratteristiche litostrutturali, idrogeologiche e idrodinamiche del sottosuolo e

degli acquiferi.

I metodi di valutazione della vulnerabilità intrinseca degli acquiferi sono molteplici (DRASTIC, Aller et Al.,

1987; GOD - Foster e Hirata 1987; SINTACS, Civita 1988; VOC, De Luca e Verga 1988). Essi si differenziano in

base al grado di approfondimento delle fasi in cui si attua il processo di contaminazione di un acquifero

(veicolazione del contaminante attraverso la zona non satura, e veicolazione e dispersione dello stesso

nell'acquifero), attraverso l'utilizzo di parametri idonei a caratterizzarle.

Le metodologie proposte negli ultimi anni si basano su metodi differenti di valutazioni dei fattori della

vulnerabilità, affrontando l'argomento con approcci ed impostazioni teoriche diversi. Se si eccettua il ricorso

a modelli matematici, che però vengono usualmente applicati per l'analisi di dettaglio di singoli fenomeni di

contaminazione, i metodi di valutazione della vulnerabilità di un acquifero si dividono fondamentalmente in

tre categorie: metodi di zonazione per aree omogenee, metodi parametrici e metodi numerici.

Nello specifico, al fine di indicare alcuni indici di vulnerabilità del territorio comunale, si è utilizzato il metodo

parametrico a punteggio semplice definito GOD di Foster e Hirata.

5.8.1 Descrizione del metodo GOD

Il metodo GOD (acronimo di Groundwater occurrence, Overall lithology of aquifer, Depth to groundwater

table or strike) è stato proposto da Foster e Hirata nel 1987. Tale metodo per la valutazione della vulnerabilità

intrinseca di un acquifero considera tre fattori:

G = tipologia della falda (libera, confinata, semiconfinata);

• **O** = tipo di acquifero, ed in particolare caratteristiche litologiche e grado di consolidazione delle rocce

della zona non satura (per gli acquiferi non confinati) e dei livelli confinanti a tetto (per gli acquiferi

confinati);

D = soggiacenza della falda a superficie libera nel caso di acquifero non confinato o tetto

dell'acquifero per gli acquiferi confinati.

Per quanto concerne il grado di confinamento (G), è possibile scegliere tra sei classi alle quali vengono

attribuiti punteggi variabili tra 0 e 1. Alle caratteristiche litologiche (O) e allo stato di consolidazione delle

rocce della zona non satura, per gli acquiferi non confinati, o degli strati confinanti, per gli acquiferi in

pressione, compete un punteggio variabile tra 0.4 e 1. Alla soggiacenza della falda (D) a superficie libera nel caso di acquifero non confinato ed alla profondità del tetto dell'acquifero, per gli acquiferi confinati, può essere assegnato un punteggio compreso tra 0.6 e 1.

La vulnerabilità intrinseca è valutata come il prodotto dei tre indici numerici corrispondenti ai parametri suddetti:

L'Indice GOD è compreso tra 0 e 1 e corrisponde a cinque gradi di vulnerabilità individuati dagli autori, a cui si aggiunge la classe vulnerabilità inesistente o nulla in caso si sia in mancanza di acquifero (Fig. 24).

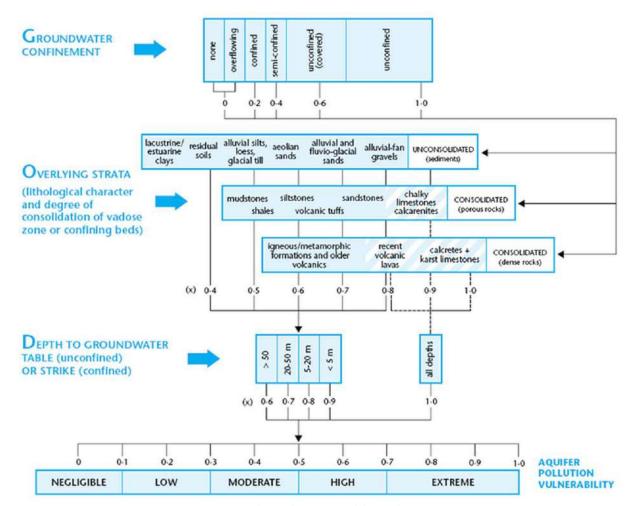


Fig. 24. Schema dei punteggi del metodo GOD.

5.8.2 Applicazione del metodo GOD al territorio comunale

In funzione delle caratteristiche litologiche delle unità geologiche presenti nell'area, sono stati definiti due raggruppamenti:

- Depositi alluvionali di fondovalle (unità BEE, POI)
- Depositi fluvioglaciali (unità PEO)

Tuttavia, nello specifico caso di Burago di Molgora, occorre tenere in debita considerazione il fenomeno degli "Occhi Pollini" che, localmente e purtroppo senza particolari segnali premonitori, può modificare drasticamente il peso degli indici. Nei settori interessati da suscettività Alta e Molto Alta al fenomeno degli occhi pollini si è considerata direttamente la situazione connessa all'apertura degli occhi pollini (situazione più critica).

In Tabella 4, per ognuno dei raggruppamenti di cui sopra e in funzione del grado di protezione, litologia e soggiacenza della falda, sono stati applicati i coefficienti G, O e D e calcolati i relativi indici GOD, da cui si è ricavato il grado di Vulnerabilità Intrinseca.

Tabella 4 – Calcolo Vulnerabilità Intrinseca tramite metodo GOD.

Gradi di Suscettività Occhi Pollini		Groundwater confinement (G)	Overlying strata (O)	Depth to groundwater (D)	GOD	Vulnerabilità Intrinseca
Alto e Molto Alto	Depositi alluvionali di fondovalle (BEE, POI)	0.8	0.85	1	0.68	Alta
Aito e iviolto Aito	Depositi fluvioglaciali (PEO)	0.8	0.85	1	0.68	Alta
Moderato	Depositi alluvionali di fondovalle (BEE, POI)	0.8	0.85	0.7	0.48	Moderata

L'elaborazione ha restituito per il territorio comunale ricadente nelle zone di suscettività al fenomeno degli Occhi Pollini Alta e Molto Alta un grado di Vulnerabilità Intrinseca "ALTO". Per quanto riguarda il territorio ricadente nella zona Moderata il grado di Vulnerabilità Intrinseca è "MODERATO". Gli esiti sono riportati nella Tav. 8 – Carta di Sintesi.

via della Conciliazione, 45/A - 29122 Piacenza Italia telefono 0523 593622 - fax 0523 593640 www.geoinvest.it - geoinvest@geoinvest.it

PEC: geoinvest@legalmail.it

6 ASSETTO IDROGRAFICO E IDRAULICO

6.1 Idrografia

Il territorio è caratterizzato dal passaggio del solo **Torrente Molgora**, esso si origina in provincia di Lecco e termina nella Muzza tra le province di Milano e Lodi. L'alveo attuale presenta una configurazione da sinuosa a debolmente meandriforme, ad eccezione di lunghi tratti resi lineari in seguito a sistemazioni antropiche. Il corso d'acqua possiede una relativa energia idraulica, evidenziata dalla presenza di rapide e dalla granulometria grossolana dei sedimenti di alveo. La portata del torrente è modesta ma tende ad aumentare rapidamente in occasione di eventi piovosi particolarmente intensi.

Una parte del reticolo idrografico di scarsa rilevanza dal punto di vista morfologico e delle portate in gioco, è costituita dai canali agricoli che percorrono specialmente la parte sud-est del territorio comunale. Essi hanno un andamento che asseconda la suddivisione degli appezzamenti agricoli ed il loro andamento risulta abbastanza discontinuo in quanto spesso vengono interrotti da interventi agricoli che ne occludono parzialmente o totalmente l'alveo.

Lungo il tratto del T. Molgora ricadente nel territorio di Burago di Molgora, sono presenti più opere di difesa spondale, queste sono rappresentate in Tav. 5 – Carta Assetto Idrografico-Idraulico.

6.1.1 Reticolo Idrografico Minore

Il Comune di Burago di Molgora, nell'ambito della presente variante, ha predisposto lo studio del Reticolo Idrico Minore (valutato parere favorevole da Regione Lombardia - prot. UTR n. AE06.2023.0002994 del 06/06/2023). L'unico reticolo presente sul territorio comunale è il Torrente Molgora appartenente al RIP. In *Tav. 5* è riportato un estratto della cartografia del RIM aggiornata al 2023. Si rimanda al documento specifico per tutto quanto attiene la definizione e il riconoscimento del reticolo idrico a livello comunale nonché per la definizione delle aree bagnate dei corsi d'acqua e relative fasce di rispetto.

6.2 Attuazione PAI-PGRA

In funzione della d.g.r. del 19/06/2017 n. X/6738 e ss.mm.ii., inerente alle "Disposizioni regionali concernenti l'attuazione del Piano di Gestione dei Rischi di Alluvione (PGRA) nel settore urbanistico e di pianificazione dell'emergenza, ai sensi dell'Art. 58 delle Norme di Attuazione del Piano Stralcio per l'Assetti Idrogeologico (PAI) del Bacino del Fiume Po così come integrate dalla variante adottata in data 7 dicembre 2016 con deliberazione n. 5 dal Comitato Istituzionale dell'Autorità di Bacino del Fiume Po", le amministrazioni e gli enti pubblici "devono prendere atto dei contenuti del PGRA, in particolare delle mappature della pericolosità e del rischio, delle informazioni associate - relative alle caratteristiche dell'alluvione potenziale - e della normativa vigente su tali aree, già presente nelle Norme di Attuazione del PAI così come approvato con DPCM

24 maggio 2001, introdotta dal nuovo Titolo V delle N.d.A. del PAI nonché dalle presenti disposizioni e ne

tengono conto da subito in sede di attuazione dei propri strumenti pianificatori e in funzione dei loro successivi

aggiornamenti e riesami".

Le disposizioni di cui sopra dettano indirizzi e limitazioni d'uso del suolo, e comportano la necessità, per i

Comuni interessati dalle aree allagabili del PGRA, di procedere obbligatoriamente ad una verifica di coerenza

tra i contenuti del proprio strumento urbanistico (PGT) e il PGRA e, ove necessario, di procedere con

l'adeguamento del PGT. Parimenti è necessario procedere con una verifica di coerenza tra il Piano di

Emergenza Comunale (PEC) vigente e il PGRA e, ove necessario, procedere con l'aggiornamento del PEC.

Ai fini dell'applicazione delle presenti disposizioni si è reso necessario individuare, attraverso la

sovrapposizione tra il nuovo quadro conoscitivo derivante dal PGRA (revisione 2022) e quello proprio dello

strumento urbanistico comunale vigente:

1) le aree allagabili del territorio per le quali vigono e sono confermate norme, disposizioni, indirizzi,

direttive che ne regolamentano l'uso e garantiscono adeguatamente la tutela di persone e beni in

relazione a possibili fenomeni alluvionali;

2) le aree allagabili di nuova introduzione o oggetto di modifica, per le quali valgono le presenti

disposizioni.

Nell'Allegato 2 della d.g.r. del 19/06/2017 n. X/6738, per ciascun Comune lombardo, si riportava l'indicazione

della presenza o meno di porzioni di territorio ricadenti entro le fasce fluviali del PAI vigenti e/o entro le

nuove aree allagabili, in riferimento ai seguenti ambiti territoriali:

Reticolo principale di pianura e di fondovalle (RP);

Reticolo secondario collinare e montano (RSCM);

Reticolo secondario di pianura naturale e artificiale (RSP);

Aree costiere lacuali (ACL).

Le figure Fig. 25 e Fig. 26 mostrano la situazione attuate (revisione 2023, che aggiorna il citato Allegato 2) nel

Comune di Burago di Molgora, in relazione a Pericolosità (Fig. 25) e Rischio (Fig. 26), come presenti sul

Geoportale Regionale.

Secondo la vigente versione del PGRA il comune di Burago di Molgora è interessato da aree allagabili ricadenti

in ambito territoriale RP sono quindi rappresentate da:

- Scenario frequente - H

- Scenario poco freguente – M

Scenario raro – L

GEOINVEST s.r.l.
Geologia-Geofisica

Secondo la vigente versione del PGRA il comune di Burago di Molgora è interessato da tutti e 4 i livelli di rischio:

- Rischio molto elevato R4
- Rischio elevato R3
- Rischio medio R2
- Rischio moderato R1

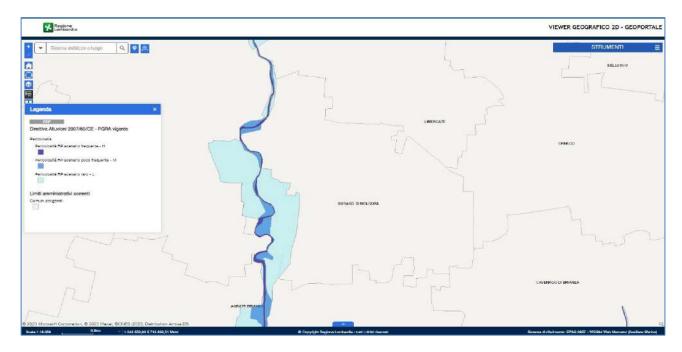


Fig. 25. Estratto del Geoportale di Regione Lombardia - Tema Pericolosità PGRA (Aggiornamento 2023).

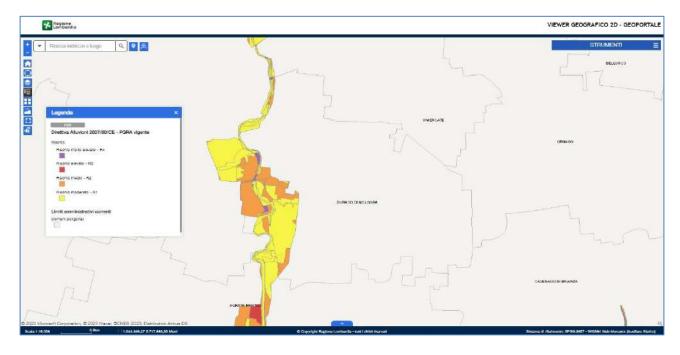


Fig. 26. Estratto del Geoportale di Regione Lombardia - Tema Rischio PGRA (Aggiornamento 2023).

Dall'osservazione della Carta PAI presente sul Geoportale Lombardia si verifica altresì che il comune di Burago di Molgora non è interessato da tratti del vigente PAI, un estratto nella figura seguente.

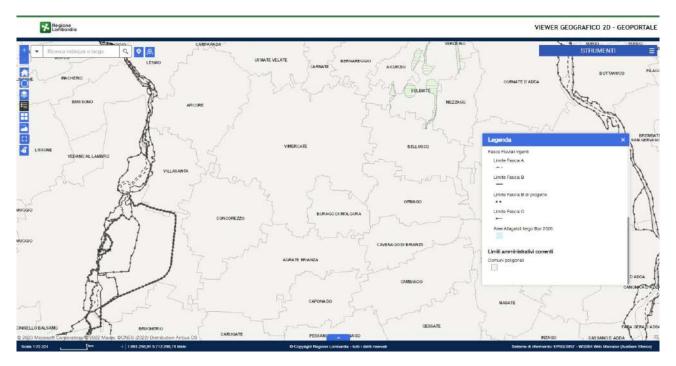


Fig. 27 - Estratto del Geoportale di Regione Lombardia - Tema PAI vigente.

Come richiesto al paragrafo 5 dell'All. A e in accordo alle indicazioni dell'Allegato 5 della Deliberazione, specificatamente per le sole aree interessate dal PGRA si sono predisposti i relativi zoom di approfondimento, pertanto, è stata redatta la Tav. 4 – Carta PAI-PGRA (estratto in Fig. 35), la quale include tutte le informazioni inerenti al PGRA vigente nel comune di Burago di Molgora.

6.3 Variante PAI (2023)

Ai fini di una valutazione completa dell'assetto idrografico-idraulico nel territorio comunale, oltre al PGRA, si considera lo *Studio di fattibilità sul bacino del torrente Molgora* (studio idraulico specifico d'asta) realizzato dal Consorzio di Bonifica Est Ticino Villoresi ed in corso di approvazione da parte di Autorità di Bacino del fiume Po. In tale studio vengono ridefiniti in dettaglio i perimetri delle aree allagabili.

I risultati dello Studio di aggiornamento della fattibilità costituiscono il riferimento principale per la predisposizione della Variante al PAI che interessa il torrente Molgora e il torrente Molgoretta, aggiornando e mettendo a sistema le conoscenze, ed estendendo a tali corsi d'acqua la delimitazione delle fasce fluviali contenute nel PAI e contestualmente aggiornando le delimitazioni del PGRA relativamente alle aree di pericolosità idraulica (RP e RSCM).

Si preme sottolineare che in data 17.07.2023 con Decreto n° 54/2023, l'Autorità di Bacino Distrettuale del Fiume Po ha adottato il progetto di aggiornamento delle fasce fluviali del PAI Po e delle mappe delle aree

allagabili del PGRA, relativo al torrente Molgora e al sistema idrografico delle Trobbie fino alla confluenza nel Canale Muzza. Attraverso il sopracitato decreto, l'Autorità di Bacino Distrettuale del Fiume Po ha decretato quanto segue:

Articolo 1 (Adozione di un "Progetto di aggiornamento delle fasce fluviali del PAI Po e delle mappe delle aree allagabili del PGRA – Torrente Molgora e sistema idrografico delle Trobbie fino alla confluenza nel canale Muzza", per le finalità di cui all'art. 68, comma 4 ter del D. Lgs. n. 152/2006):

"1. è adottato il "Progetto di aggiornamento delle fasce fluviali del PAI Po e delle mappe delle aree allagabili del PGRA – Torrente Molgora e sistema idrografico delle Trobbie fino alla confluenza nel canale Muzza", per le finalità di cui all'art. 68, comma 4 ter del D. Lgs. n. 152/2006".

[...]

Articolo 5 (Misure temporanee di salvaguardia per le aree interessate dal Progetto di aggiornamento in Adozione):

"1. Dalla data di pubblicazione del presente Decreto sul sito istituzionale dell'Autorità di bacino distrettuale e fino all'approvazione definitiva dell'aggiornamento in oggetto, alle aree interessate dal Progetto di aggiornamento in adozione e non ancora sottoposte alle disposizioni vincolanti stabilite dalle vigenti Norme di Attuazione del PAI-Po, si applicano misure temporanee di salvaguardia ai sensi dell'art. 65, comma 7 del D. Lgs. n. 152/2006 e s.m.i. con i contenuti di cui alle sequenti lettere a) e b):

a) alle aree interessate dagli aggiornamenti degli Elaborati n. 3 e n. 8 del PAI-Po si applicano, rispettivamente, gli art. 1, commi 5 e 6; art. 29, comma 2; art. 30, comma 2; art. 32, commi 3 e 4; art. 38; art. 38bis; art. 39, commi 1, 2, 3, 4, 5, 6; art. 41 delle citate NA del PAI-Po;

- b) alle aree interessate dagli aggiornamenti delle Mappe del PGRA si applicano le disposizioni di cui al Titolo V delle NA del PAI-Po, nonché le disposizioni regionali attuative approvate dalla Regione ai sensi dell'art. 65 del D. Lgs. n. 152/2006 e s.m.i.
- 2. In conformità a quanto previsto dall'art. 1, comma 7 delle NA del PAI-Po, per il periodo indicato al comma 1 nelle aree menzionate in tale comma continuano, in ogni caso, a trovare applicazione le disposizioni stabilite dai vigenti strumenti di pianificazione territoriale regionale, provinciale e comunale ovvero da altri piani di tutela del territorio, qualora dette disposizioni siano più restrittive delle misure di salvaguardia previste dal citato comma 1.
- 3. Per le aree di cui ai commi precedenti, sono fatti salvi gli interventi già autorizzati (o per i quali sia già stata presentata denuncia di inizio di attività ai sensi dell'art. 22 ss. del DPR 6 giugno 2001 n. 380 e s.m.i.) rispetto ai quali i relativi lavori siano già stati iniziati al momento di adozione del presente Decreto e vengano completati entro il termine di tre anni dalla data di inizio."

Si riporta in Fig. 28 un estratto delle tavole del Progetto di Variante PAI (giugno 2023) – Torrente Molgora da Lomagna alla confluenza nel Canale della Muzza – rispettivamente la mappa di Aggiornamento delle fasce

PAI e la mappa di Aggiornamento della delimitazione delle aree allagabili del PGRA, estratti di dettaglio sul tratto del T. Molgora che attraversa il territorio comunale di Burago di Molgora. Questa tavola sarà riportata come estratto nella Carta dei Vincoli (Cap. 8, Fig. 79).

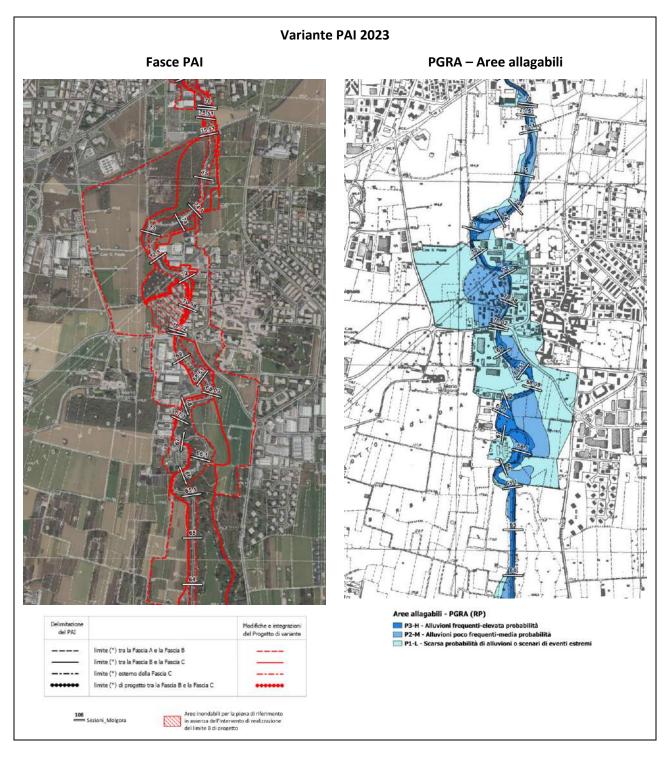


Fig. 28 - Estratto delle tavole del Progetto di Variante PAI (giugno 2023) — Torrente Molgora da Lomagna alla confluenza nel Canale della Muzza — a sinistra la mappa di Aggiornamento delle fasce PAI e a destra la mappa di Aggiornamento della delimitazione delle aree allagabili del PGRA. Dettaglio della Molgora sul territorio comunale di Burago di Molgora.

6.4 Analisi di dettaglio su aree rischio R4 – rischio molto elevato

Allo stato attuale (PGRA vigente), nel territorio di Burago di Molgora risultano essere presenti alcune aree caratterizzate da rischio R4 (riportate in Tav. 4 – "PAI-PGRA"); in funzione all'attuazione della D.g.r. 19 giugno 2017 – n. X/6738 con la presente variante in adeguamento alla I.r. n. 31 del 28 novembre 2014 occorre procedere come segue:

"entro le aree che risultano classificate come R4 - Rischio Molto Elevato (ovvero entro le aree che risultano già edificate nell'Ortofoto AGEA 2015 pubblicata sul GEOPortale della Regione Lombardia) i Comuni sono tenuti a effettuare una valutazione più dettagliata delle condizioni di pericolosità e rischio locali, d'intesa con l'Autorità regionale o provinciale competente in materia. L'intesa si intende raggiunta se le valutazioni vengono svolte secondo le metodologie riportate nell'Allegato 4 alla d.g.r. IX/2616/20119. La valutazione deve avere le finalità descritte al paragrafo 4. "Disposizioni relative all'edificato esistente esposto al rischio". Tale valutazione deve essere trasmessa a Regione Lombardia che la utilizzerà sia nell'ambito dei previsti riesami e aggiornamenti delle mappe e del PGRA sia ai fini del monitoraggio delle misure di prevenzione del rischio previste nel PGRA."

Metodologia

Al fine di una valutazione più dettagliata delle condizioni di pericolosità e rischio locali nelle zone classificate dal PGRA vigente come R4 si è provveduto ad una valutazione di dettaglio delle tipologie di copertura e di utilizzo del territorio sulle aree R4 quindi una verifica dei codici DUSAF basata sul controllo dall'ortofoto AGEA 2015 e di conseguenze una valutazione delle Classi di Danno evidenziando possibili errori dovuti alle differenze di scala.

Per calcolare la Classe di Rischio è necessario conoscere le Classi di Danno e di Pericolosità della specifica area d'interesse. In funzione della matrice del rischio per l'ambito RP (Fig. 29) si osserva che le combinazioni di Classi di Pericolosità e Classi di Danno che possono generare un Rischio di classe R4 sono:

- Aree P3 con Classi di Danno D3 e D4,
- Aree P2 con Classe di Danno D4.

CLA	SSI DI	1000000000	CLASSI E	0000000
RIS	CHIO	P3	P2	P1
Ş	D4	R4	R4	R2
IDAN	D3	R4	R3	R2
CLASSI DI DANNO	D2	R3	R2	R1
9	D1	R1	R1	R1

Matrice 1
Reticolo principale (RP)
Reticolo secondario collinare
e montano (RSCM)

Fig. 29 – Matrice di Rischio per Reticolo principale RP.

PEC: geoinvest@legalmail.it

Per la valutazione del danno è stato utilizzato il DUSAF5 (definito a partire dalle ortofoto 2015, in accordo con l'indicazione della D.g.r. X/6738) che classifica il territorio sulla base delle principali tipologie di copertura e di utilizzo di esso. Come indicato in Tabella 5 - Attribuzione classe di danno per elementi poligonali e puntuali (fonte Regione Lombardia)., ad ogni codice DUSAF corrisponde una Classi di Danno.

Tabella 5 - Attribuzione classe di danno per elementi poligonali e puntuali (fonte Regione Lombardia).

	CLASSE D4						
	DUSAF						
1111	Tessuto residenziale denso						
1112	Tessuto residenziale continuo mediamente denso						
1121	Tessuto residenziale discontinuo						
1122	Tessuto residenziale rado e nucleiforme						
1123	Tessuto residenziale sparso						
11231	Cascine						
1424	Aree archeologiche						
12122	Impianti di servizi pubblici e privati						
12111	Insediamenti industriali, artigianali commerciali						
12112	Insediamenti produttivi agricoli						
12121	Insediamenti ospedalieri						
12123	Impianti tecnologici						
1222	Reti ferroviarie e spazi accessori						
123	Aree portuali						
12125	Aree militari obliterate						
124	Aeroporti ed eliporti						
1421	Implanti sportivi						
1423	Parchi divertimento						
1422	Campeggi e strutture turistiche e ricettive						

	DUSAF
	Brow GR SV
133	Cantieri
12124	Cimiteri
132	Discariche
131	Cave
2113	Colture orticole
2114	Colture floro-vivaistiche
2115	Orti familiari

	DUSAF
211	Seminativi
1411	Parchi e giardini
221	Vigneti
222	Frutteti e frutti minori
223	Oliveti
3114	Castagneti da frutto
213	Risaie
2313	Marcite
1412	Aree verdi incolte
2241	Pioppeti
2242	Altre legnose agrarie

	Reti stradali
D4	Reti primarie; autostrade, strade statali/regionali, strade provinciali
D3	Reti secondarie: strade comunali

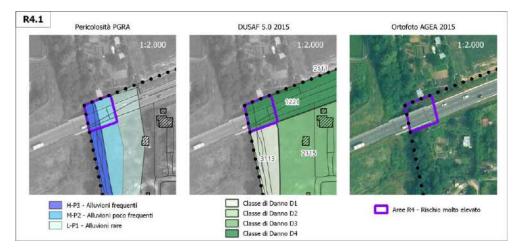
	CLASSE D1					
DUSAF						
134	Aree degradate non utilizzate e non vegetate					
231	Prati permanenti in assenza di specie arboree ed arbustive					
311	Boschi di latifoglie					
312	Boschi conifere					
313	Boschi misti					
314	Rimboschimenti recenti					
331	Spiagge, dune ed alvei ghialosi					
321	Praterie naturali d'alta quota					
322 - 324	Cespuglieti					
332	Accumuli detritici e affioramenti litoidi privi di vegetazione					
333	Vegetazione rada					
411	Vegetazione delle aree umide interne e delle torbiere					
3113	Formazioni ripariali					
3222	Vegetazione dei greti					
3223	Vegetazione degli argini sopraelevati					
511	Alvei fluviali e corsi d'acqua artificial					
5121	Bacini idrici naturali					
5123	Bacini idrici da attività estrattive interessanti la falda					
5122	Bacini idrici artificiali					
335	Ghiaccial e nevi perenni					

Valutazione e gestione del rischio di alluvioni in Regione Lombardia - L'attuazione della direttiva 2007/60/CE - Milano 12 febbraio 2014

Elementi esposti	Danno
Beni culturali vincolati	D4
Immobili e aree di notevole interesse pubblico	D4
Impianti allegato I del D.L. 59/2005	D4
Aree protette per estrazione acqua a uso idropotabile	D4
Strutture ospedaliere	D4
Scuole	D4
Dighe	D4
Depuratori	D3
Inceneritori	D3

Nel territorio comunale di Burago di Molgora sono presenti tre aree R4 definite dal PGRA vigente. Nelle tavole seguenti sono riportate in riquadri di dettaglio le aree classificate come R4 dal PGRA e i tre temi utili a rivalutare la Classe di Rischio:

- Mappa di Pericolosità (PGRA 2023) che restituisce un valore di scenario di pericolosità da P1 a P3;
- DUSAF 5.0 (2015) raffigurante le Classi di Danno (da verde chiaro classe D1 a verde scuro classe D4);
 attraverso le etichette è possibile verificare il codice DUSAF quindi verificare la corretta assegnazione della tipologia di uso del suolo;
- Ortofoto AGEA 2015 utilizzata per verificare le tipologie di copertura e di utilizzo del territorio.



Risultati

R4.1 – Ponte Tangenziale Sud Vimercate

Pericolosità PGRA 2023: Scenario frequente **P3** e poco frequente **P2** DUSAF 5.0 2015: Reti stradali e spazi accessori (1221) **D4** Ortofoto AGEA 2015: Reti stradali e spazi accessori (1221) **D4**

Da questa analisi si conferma il calcolo dell'area R4 eseguito dal PGRA (D4 x (P3 o P2) = R4) dato che la zona interessata ricade in una rete stradale. Tuttavia, si segnala che questa zona costituisce il ponte della strada in oggetto, quindi, è sopraelevato rispetto al fiume.

Utilizzando la sezione 75.12 (Fig. 30) estratta dallo *Studio di fattibilità sul bacino del torrente* Molgora (adottato e in corso di approvazione da parte di AdBPo) è possibile verificare che per una piena al T = 100 anni il livello dell'acqua rimane al di sotto delle sponde (punti rossi) e 0.5 m <u>al di sotto della base del ponte stradale</u>, di conseguenza, non vi è il rischio di un'esondazione su questo tratto stradale.

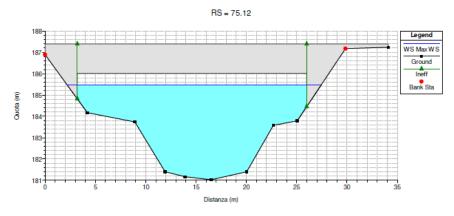
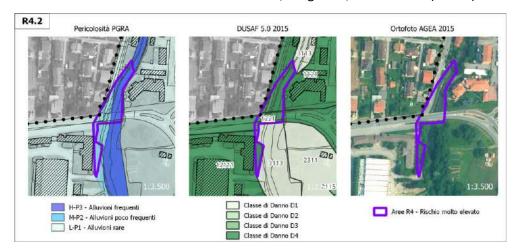


Fig. 30 – Sezione 75.12 (Studio di fattibilità sul bacino del torrente Molgora).

Di conseguenza per il calcolo del rischio occorre utilizzare la Classe di Danno DUSAF 3113 - formazioni ripariali relativa al corso d'acqua. In funzione di tale evidenza (Fig. 30) il rischio assume la seguente classe:

D1 (3113) \times (P3 o P2) = **R1**


R4.2 – Ponte SP200

Pericolosità PGRA 2023: Scenario frequente P3 e poco frequente P2

DUSAF 5.0 2015: • Zona nord: Tessuto residenziale discontinuo (1121) D4

o Zona centro: Reti stradali e spazi accessori (1221) D4

Zona sud: Insediamenti industriali, artigianali, commerciali (12111) D4

Dall'Ortofoto AGEA 2015 la zona a nord definita dal DUSAF come 1121 non risulta essere tessuto residenziale bensì può essere definita come 3113 – formazioni ripariali (come tutta l'area incisa del Molgora) classificata con classe di danno D1 e lo stesso per la zona a sud classificata come 12111 ma che rientra anch'essa all'interno delle sponde. A nord e a sud della strada le aree ricadenti in R4 sono quindi declassabili secondo il seguente calcolo:

D1 (3113)
$$\times$$
 (P3 o P2) = **R1**

La zona centrale classificata dal DUSAF come 1221 costituisce il ponte della statale, il quale è sopraelevato rispetto al fiume. Utilizzando la sezione 69.99 estratta dallo *Studio di fattibilità sul bacino del torrente* Molgora (adottato e in corso di approvazione da parte di AdBPo) è possibile verificare che per una piena al T = 100 anni il livello dell'acqua rimane al di sotto delle sponde (punti rossi) e al di sotto del piano stradale, di conseguenza, non vi è il rischio di un'esondazione su questo tratto stradale.

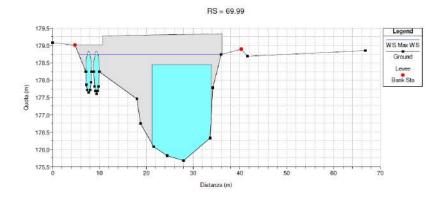
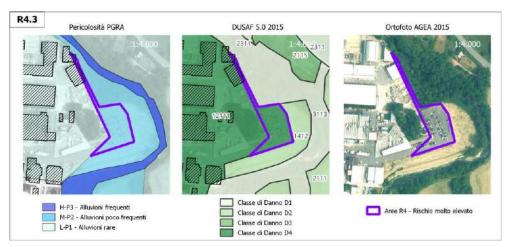


Fig. 31 – Sezione 69.99 (Studio di fattibilità sul bacino del torrente Molgora).

Di conseguenza per il calcolo del rischio occorre utilizzare la Classe di Danno DUSAF 3113 - formazioni ripariali relativa al corso d'acqua. In funzione di tale evidenza (Fig. 31) il rischio assume la seguente classe:

D1 (3113) \times (P3 o P2) = **R1**



R4.3 - Parcheggio Salchi Metalcoat

Pericolosità PGRA 2023: Scenario poco frequente P2

DUSAF 5.0 2015: Insediamenti industriali, artigianali, commerciali (12111) D4

Ortofoto AGEA 2015: Insediamenti industriali, artigianali, commerciali (12111) D4

La classificazione da DUSAF 5.0 di quest'area è confermata dall'ortofoto AGEA 2015, l'uso del suolo è quindi 'insediamento industriale, artigianale, commerciale' (12111).

In questo caso si effettua un'analisi dettagliata sulla delimitazione delle aree allagabili del PGRA. Il PGRA vigente definisce la zona d'interesse come pericolosità P2, tuttavia, quest'area è stata recentemente oggetto di opere di regimazione idraulica, in particolare è stata progettata ed attuata un'opera di difesa spondale e messa in sicurezza dell'argine destro del T. Molgora.

Di seguito si riportano, in sezione e in pianta, due estratti dell'area d'interesse tratti dallo Studio idraulico – Dott. Ing. Grotti Loris, dove si evidenzia la presenza del nuovo argine, il quale circonda tutta la zona del parcheggio da nord a sud.

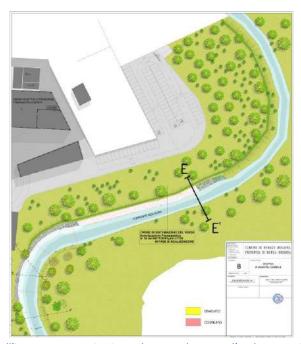


Fig. 32 – Planimetria generale dell'intervento – Argine in verde scuro che segue l'andamento della Molgora e circonda l'area di interesse messa in sicurezza (fonte: Studio idraulico – Dott. Ing. Grotti Loris).

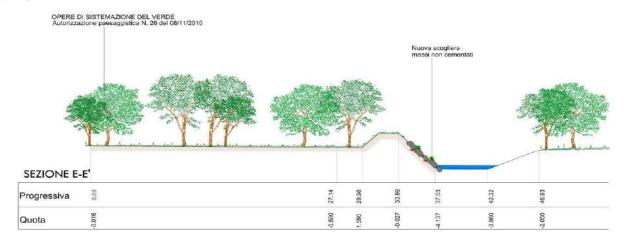


Fig. 33 – Sezione EE' (ubicazione nella figura precedente) (fonte: Studio idraulico – Dott. Ing. Grotti Loris).

Si conclude che l'area allagabile P2, considerando l'opera di messa in sicurezza soprariportata, sarà verosimilmente riperimetrata sul bordo interno dell'argine realizzato.

Questo è confermato dalla nuova delimitazione dell'area allagabili (estratto in Fig. 34 della *Mappa di aggiornamento della delimitazione delle aree allagabili del PGRA* – Progetto di Variante al PAI - AdBPo, 2023), dove è possibile osservare che l'area esterna all'argine viene riclassificata a grado di pericolosità P1.

Fig. 34 – Dettaglio su zona R4.3 della Mappa di aggiornamento della delimitazione delle aree allagabili del PGRA – Progetto di Variante al PAI - AdBPo, 2023.

Di conseguenza per il calcolo del rischio si conferma la Classe di Danno DUSAF 12111 ma occorre variare la Classe di Pericolosità da P2 a P1. In funzione di tale evidenza il rischio assume la seguente classe:

$$D4 (12111) \times (P1) = R2$$

Tutte le aree classificate a rischio R4 dal PGRA vigente, alla luce dell'intersezioni e delle analisi di dettaglio eseguite, risultano declassate a classi di rischio inferiori. In Tav. 4 (estratto in Fig. 35), oltre al rischio del PGRA vigente, sono riportate le aree R4 in tre riquadri di dettaglio nel quale viene mostrato il declassamento alle classi di rischio inferiori attraverso i relativi colori.

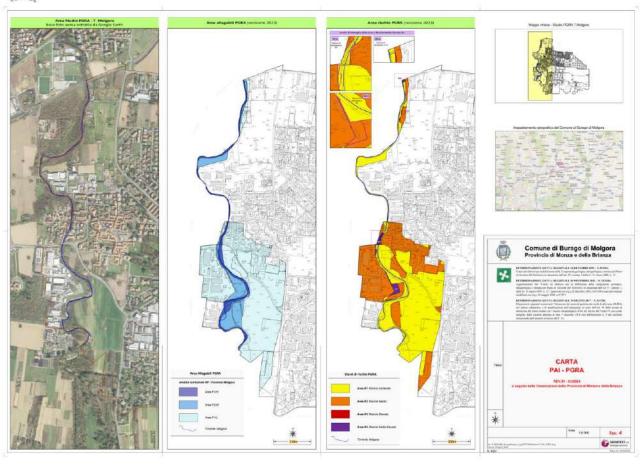


Fig. 35 – Estratto Tav. 4 - Carta PAI-PGRA

6.5 Elementi idraulici

In *Tav. 5 "Assetto Idrografico-Idraulico"* (Fig. 37) sono stati rappresentati i tratti di reticolo e gli elementi che possono presentare un rischio idraulico:

- opere di attraversamento potenzialmente interferenti con Torrente Molgora (n. 2 ponti);
- rete fognaria da WebGis BrianzAcque (estratto in Fig. 36).

In *Tav. 5* sono state inoltre rappresentati ulteriori settori d'interesse, quali:

- Aree allagabili con pericolosità P1/L, P2/M, P3/H (PGRA)
- Opere di difesa spondale (tratte dal PGT-2006)
- Vasche di laminazione in progetto / terminate / in aggiornamento, indicate con il codice di intervento
 (da Documento di Piano Fognario Comunale redatto da BrianzAcque, ed. 09/2022)
- Aree di pericolosità idraulica H3 e H4 (estratte dallo Studio comunale di gestione del rischio idraulico R.R. 7/2017 art. 17 c. 7, redatto da BrianzAcque, ed. 05/2021) valutate nel capitolo inerente alla

"Carta di Sintesi". Le aree di pericolosità H1 e H2, da non riportare nella Carta di Sintesi, sono mostrate per completezza in Tav. 5 nell'estratto della Carta di Pericolosità Idraulica (T=10 anni) di BrianzAcque.

Gli interventi necessari per l'aggiornamento dei Piani Fognari sono stati definiti e ordinati secondo criteri di priorità.

L'intervento in stato di progetto presente nel "PROGRAMMA DI RIASSETTO DELLE FOGNATURE E DEGLI SFIORATORI" (relazione BrianzAcque 09/2022) con codice BM-03 (Adeguamento della rete in via Dante Alighieri e nuova condotta in via Primo Villa più vasca volano in via Mazzini) si è concluso nel dicembre 2022.

Questo triplice intervento sul sistema fognario ha avuto l'obiettivo di dare risposta ai problemi degli allagamenti nell'area Ovest urbana, appena fuori dal nucleo centrale dell'abitato. Il lavoro più consistente ha riguardato la costruzione di una vasca volano in via Mazzini completamente interrata con un invaso di capienza di circa 900 metri cubi (perimetrazione riportata in Tav. 5).



Fig. 36 – Estratto fuori scala della cartografia della rete fognaria (fonte WebGis BrianzAcque).

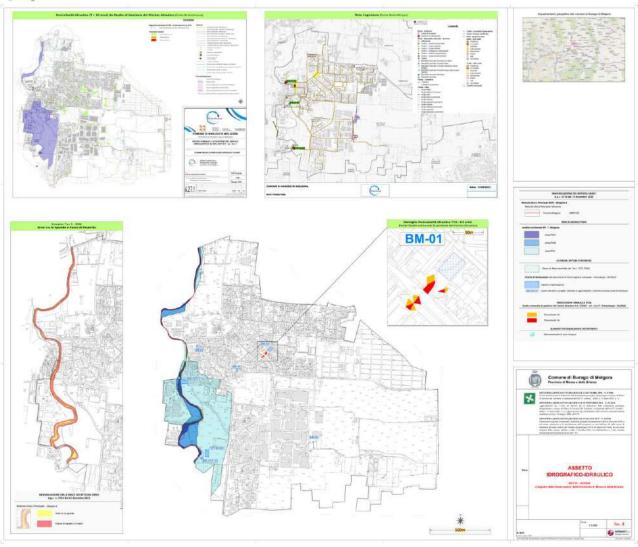


Fig. 37. Carta dell'assetto idrografico-idraulico (Tav. 5, fuori scala).

7 CARTA DELLA PERICOLOSITA' SISMICA LOCALE

7.1 La normativa sismica

7.1.1 Evoluzione normativa, pre 2003

L'individuazione delle zone sismiche, in Italia, è avvenuta agli inizi del 1900 attraverso lo strumento del Regio

Decreto, emanato a seguito dei terremoti distruttivi di Reggio Calabria e Messina del 28 dicembre 1908.

Dal 1927 le località colpite sono state distinte in due categorie, in relazione al loro grado di sismicità ed alla

loro costituzione geologica. Pertanto, la mappa sismica in Italia non era altro che la mappa dei territori colpiti

dai forti terremoti avvenuti dopo il 1908, mentre tutti i territori colpiti prima di tale data - la maggior parte

delle zone sismiche d'Italia - non erano classificati come sismici e, conseguentemente, non vi era alcun

obbligo di costruire nel rispetto della normativa antisismica. La lista originariamente consisteva, quindi, nei

comuni della Sicilia e della Calabria gravemente danneggiati dal terremoto del 1908, che veniva modificata

dopo ogni evento sismico aggiungendovi semplicemente i nuovi comuni danneggiati.

La legislazione antisismica vigente è essenzialmente basata sull'apparato normativo costituito dalla legge

2 febbraio 1974, n. 64, recante "Provvedimenti per le costruzioni con particolari prescrizioni per le zone

sismiche", che ha integralmente sostituito la legge 25 novembre 1962, n. 1684, nonché della legge

5 novembre del 1971, n. 1086, recante "Norme per la disciplina delle opere di conglomerato cementizio

armato, normale e precompresso e a struttura metallica".

È quindi solamente nel 1974, attraverso la legge n. 64, è stato stabilito il quadro di riferimento per le modalità

di classificazione sismica del territorio nazionale, oltre che di redazione delle norme tecniche. Tale legge ha

delegato il Ministro dei lavori pubblici:

- emanazione di norme tecniche per le costruzioni sia pubbliche che private, da effettuarsi con decreto

ministeriale, di concerto con il Ministro per l'interno, sentito il Consiglio superiore dei lavori pubblici,

e con la collaborazione del Consiglio nazionale delle ricerche (CNR);

aggiornamento della classificazione sismica attraverso appositi decreti ministeriali.

Si ricorda che il carattere distintivo di tale legge è stata la possibilità di aggiornare le norme sismiche

ogniqualvolta fosse giustificato dall'evolversi delle conoscenze dei fenomeni sismici, mentre, per la

classificazione sismica si è operato, come per il passato, attraverso l'inserimento di nuovi comuni colpiti dai

nuovi terremoti.

Successivamente, gli studi di carattere sismologico effettuati all'indomani del terremoto del Friuli Venezia

Giulia del 1976 e di quello in Irpinia del 1980, svolti all'interno del Progetto finalizzato "Geodinamica" del

CNR, hanno portato ad un notevole aumento delle conoscenze sulla sismicità del territorio nazionale ed

hanno consentito la formulazione di una proposta di classificazione sismica presentata dal CNR al Governo,

che è stata tradotta in una serie di decreti del Ministero dei lavori pubblici approvati tra il 1980 ed il 1984,

che hanno costituito, pertanto, la classificazione sismica italiana fino all'emanazione dell' ordinanza n. 3274

del 20 marzo 2003. La proposta del CNR, per la prima volta in Italia, è stata basata su indagini di tipo

probabilistico della sismicità italiana e la classificazione sismica ha preso in considerazione tre categorie

sismiche.

Relativamente, invece, alle norme tecniche, già con il DM del 3 marzo 1975, sono state emanate le prime

disposizioni successivamente integrate da una serie di successivi decreti, tra cui si ricordano il DM 12 febbraio

1982, a sua volta sostituito dal DM 16 gennaio 1996, come modificato dal DM 4 marzo 1996, che ha

provveduto ad integrare il DM del 3 marzo 1975 con alcune indicazioni contenute in alcune circolari

ministeriali.

Su tale impianto normativo si è inserito il nuovo processo di distribuzione delle competenze fra Stato, regioni

ed enti locali, attuato con le cd "leggi Bassanini" del 15 marzo 1997, n. 59. Conseguentemente, la competenza

per l'individuazione delle zone sismiche, la formazione e l'aggiornamento degli elenchi delle medesime zone

che, fino al 1998 era attribuita al Ministro dei lavori pubblici, è stata trasferita, con il decreto legislativo n.

112 del 1998 - art. 94, comma 2, lett. a) - alle Regioni, mentre spetta allo Stato quella di definire i relativi

criteri generali per l'individuazione delle zone sismiche e le norme tecniche per le costruzioni nelle

medesime zone - art. 93, comma 1, lett. g).

Si ricorda, ancora, che tale residua competenza statale è rimasta incardinata nel Ministero dei Lavori Pubblici

fino all'approvazione del decreto legislativo n. 300 del 1999, che l'ha assegnata alla neo istituita Agenzia di

protezione civile e nuovamente attribuita al Dipartimento della protezione civile con il decreto legge n. 343

del 2001, convertito con modificazioni dalla legge n. 401 del 2001 che ha soppresso l'Agenzia, peraltro mai

entrata nella piena operatività.

Inoltre, in conseguenza del riordino normativo della materia edilizia, le disposizioni antisismiche previste

dalla legge n. 64 del 1974 sono confluite, con alcune modifiche, nel DPR 6 giugno 2001, n. 380, Testo unico

delle disposizioni legislative e regolamentari in materia edilizia, il cui Capo IV reca "Provvedimenti per le

costruzioni con particolari prescrizioni per le zone sismiche", con disposizioni specifiche relative alle norme

per le costruzioni in zone sismiche, alla relativa vigilanza, nonché alle modalità di repressione delle violazioni.

Il DPR n. 380, come modificato e integrato dal decreto legislativo 27 dicembre 2002, n. 301, ha stabilito che

tutte le costruzioni di rilievo per la pubblica incolumità, se realizzate in zone sismiche, devono essere

conformi, oltre che alle disposizioni tecniche applicabili ad ogni tipo di costruzione edificata su tutto il

territorio nazionale, anche a specifiche norme tecniche, la cui emanazione è affidata al Ministro dei lavori pubblici, di concerto con il Ministro dell'interno e sentito il Consiglio superiore dei lavori pubblici, il CNR, nonché la Conferenza unificata (art. 83). Negli articoli successivi sono state poi dettati i criteri generali cui dovranno uniformarsi le norme tecniche per le costruzioni in zone sismiche.

7.1.2 La nuova normativa sismica a livello nazionale

Immediatamente dopo il terremoto del 31 ottobre 2002 che ha colpito i territori al confine fra il Molise e la Puglia, è emanata l'**Ordinanza del 20 marzo 2003, n. 3274 del Presidente del consiglio dei Ministri**, pubblicato sulla G.U. n. 105, S.O. n. 72 del 08/05/2003 "*Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica*", al fine di fornire una risposta immediata alla necessità di aggiornamento della classificazione sismica e delle norme antisismiche.

Alla luce dell'ordinanza n. 3274 e, a differenza di quanto previsto dalla normativa precedente, **tutto il territorio nazionale è stato classificato come sismico e suddiviso in 4 zone**, caratterizzate da pericolosità sismica decrescente; tali zone sono individuate da 4 classi di accelerazione massima del suolo con probabilità di accadimento del 10% in 50 anni.

Zona 1	È la zona più pericolosa. Possono verificarsi fortissimi terremoti
Zona 2	In questa zona possono verificarsi forti terremoti
Zona 3	In questa zona possono verificarsi forti terremoti ma rari
Zona 4	È la zona meno pericolosa. I terremoti sono rari

A ciascuna zona è attribuito un valore dell'azione sismica utile per la progettazione, espresso in termini di accelerazione massima su roccia (zona 1=0.35 g, zona 2=0.25 g. zona 3=0.15 g, zona 4=0.05 g).

Le prime tre zone della nuova classificazione corrispondono, dal punto di vista degli adempimenti previsti dalla legge n. 64 del 1974, alle zone di sismicità alta, media e bassa, mentre per la zona 4, di nuova introduzione, viene data facoltà alle regioni di imporre l'obbligo della progettazione antisismica. Il collegamento tra la classificazione e le norme tecniche risulta, pertanto, molto stretto.

Oltre ai criteri per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone, con l'ordinanza sono state, infatti, approvate le seguenti norme tecniche (contenute negli allegati 2, 3 e 4 dell'ordinanza, di cui fanno parte integrante) che riguardano, per la prima volta, la quasi totalità di tipologie di costruzioni: edifici, ponti ed opere di fondazione e di sostegno dei terreni.

R4251 - 65/129

L'art. 2, comma 2, dell'ordinanza n. 3274 prevede l'applicazione delle norme tecniche previgenti per le

seguenti opere:

opere i cui lavori siano già iniziati;

• opere pubbliche già appaltate o i cui progetti siano stati già approvati alla data della presente

ordinanza;

opere di completamento degli interventi di ricostruzione in corso.

Viene altresì previsto, in tutti i restanti casi, la possibilità di continuare ad applicare le norme tecniche

previgenti per non oltre 18 mesi, termine più volte prorogato da una serie di successive ordinanze, di cui

l'ultima – la n. 3467 del 2005 – ne ha differito l'applicabilità al 23 ottobre 2005, data di entrata in vigore della

nuova disciplina antisismica introdotta dal DM 14 settembre 2005.

Con l'ordinanza n. 3274 lo Stato ha provveduto a fissare i criteri generali per l'individuazione delle zone

sismiche, dando mandato alle regioni, in armonia con il dettato dell'art. 112 del decreto legislativo n. 112 del

1998, per l'individuazione delle zone sismiche.

Alle regioni, compete, quindi, la predisposizione dell'elenco dei comuni classificati rispettivamente in zona 1,

2, 3 e 4. Per procedere a tale identificazione le regioni potevano elaborare in proprio una mappa di

pericolosità sismica regionale, oppure utilizzare quella fornita dallo Stato per tutto il territorio nazionale e

allegata ai criteri per l'individuazione delle zone sismiche nella veste dell'elenco di tutti i comuni italiani con

la loro classificazione sismica.

Con il DM 14 settembre 2005 sono state quindi approvate le Norme tecniche per le costruzioni, allo scopo

di riunire in un unico testo la disciplina tecnica relativa alla progettazione ed all'esecuzione delle costruzioni

e di realizzarne nel contempo l'omogeneizzazione e la razionalizzazione.

Il testo, composto da un'introduzione e dodici capitoli, rappresenta una messa a punto completa della

complessa normativa in materia di costruzioni, relativa alla progettazione strutturale degli edifici ed alle

principali opere di ingegneria civile, accanto alle caratteristiche dei materiali e dei prodotti utilizzati, e

consiste, inoltre, in un ampio aggiornamento del quadro legislativo nazionale in campo strutturale, basato

sulle leggi fondamentali n. 1086 del 1971 e n. 64 del 1974.

Da ultimo occorre accennare che l'entrata in vigore del DM 14 settembre 2005 ha determinato la piena

operatività della nuova classificazione sismica, comportando la necessità dell'applicazione dell'art. 104 del

T.U. in materia edilizia, n. 380 del 2001, relativo alle "Costruzioni in corso in zone sismiche di nuova

classificazione". In base a tale articolo, coloro che in una zona sismica di nuova classificazione avevano iniziato

una costruzione prima dell'entrata in vigore del provvedimento di classificazione, erano tenuti a farne

GEOINVEST s.r.l.
Geologia-Geofisica

denuncia, entro quindici giorni dall'entrata in vigore del provvedimento stesso, al competente ufficio tecnico della regione.

Le novità introdotte con l'ordinanza sono state pienamente recepite e ulteriormente affinate, grazie anche agli studi svolti dai centri di competenza (Ingv, Reluis, Eucentre). Un aggiornamento dello studio di pericolosità di riferimento nazionale (Gruppo di Lavoro, 2004), previsto dall'opcm 3274/03, è stato adottato con l'Ordinanza del Presidente del Consiglio dei Ministri n. 3519 del 28 aprile 2006 e ha previsto la suddivisione delle zone sismiche in relazione all'accelerazione di picco su terreno rigido (Fig. 38):

Zona sismica	Accelerazione con probabilità di superamento pari al 10% in 50 anni (ag)
1	ag > 0.25
2	0.15 < ag ≤ 0.25
3	0.05 < ag ≤ 0.15
4	ag ≤ 0.05

Nel rispetto degli indirizzi e criteri stabiliti a livello nazionale, alcune Regioni hanno classificato il territorio nelle quattro zone proposte, altre Regioni hanno classificato diversamente il proprio territorio, ad esempio adottando solo tre zone (zona 1, 2 e 3) e introducendo, in alcuni casi, delle sottozone per meglio adattare le norme alle caratteristiche di sismicità. Qualunque sia stata la scelta regionale, a ciascuna zona o sottozone è attribuito un valore di pericolosità di base, espressa in termini di accelerazione massima su suolo rigido (ag). Tale valore di pericolosità di base non ha però influenza sulla progettazione.

Dal 1 luglio 2009, con un anno di anticipo rispetto a quanto in previsione anche a causa del terremoto che ha colpito l'Abruzzo nell'Aprile 2009, entra in vigore il decreto del Ministero delle Infrastrutture e dei Trasporti del 14.01.2008, anche conosciuto come NTC2008 (*Norme Tecniche delle Costruzioni del 2008*); tali norme d'altronde erano completamente operative in quanto a Febbraio 2009 è stata pubblicata sulla gazzetta ufficiale la Circolare del Ministero delle Infrastrutture n.617 del 2 febbraio 2009 recante le istruzioni per l'applicazione delle nuove norme. Tali norme hanno colmato le lacune presenti nel Testo Unico del 2005 e non solo si sono allineate con gli Eurocodici, ma si pongono tra le più avanzate a livello mondiale.

via della Conciliazione, 45/A - 29122 Piacenza Italia telefono 0523 593622 - fax 0523 593640 www.geoinvest.it - geoinvest@geoinvest.it PEC: geoinvest@legalmail.it

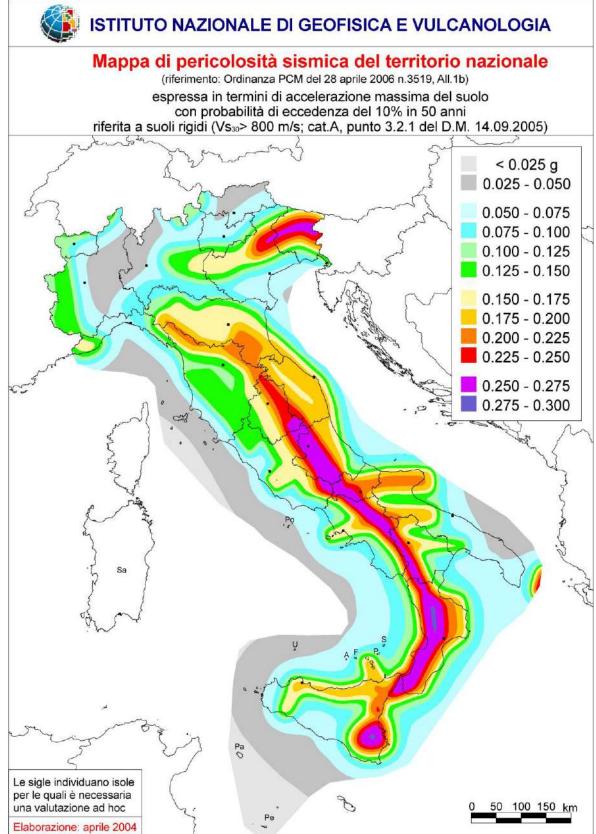


Fig. 38 - Mappa di Pericolosità Sismica del territorio nazionale (OPCM 3519/2006).

R4251 - 68/129

I dodici capitoli che le compongono, confermando la natura prestazionale delle norme già parzialmente

anticipata nel T.U. del 2005, hanno comportato una sensibile variazione della filosofia delle verifiche ed

hanno introdotto il concetto di pericolosità sismica locale: è stata abbandonata la concezione del territorio

italiano diviso in zone sismiche ed è stata formulata una completa zonizzazione mediante adozione di un

reticolo i cui vertici sono dotati di caratteristiche puntuali di pericolosità sismica.

Ricapitolando, le Norme Tecniche per le Costruzioni (Decreto Ministeriale del 14 gennaio 2008), hanno

modificato il ruolo che la classificazione sismica aveva ai fini progettuali: per ciascuna zona – e quindi

territorio comunale – dove precedentemente veniva fornito un valore di accelerazione di picco e quindi di

spettro di risposta elastico da utilizzare per il calcolo delle azioni sismiche.

Dal 1 luglio 2009 con l'entrata in vigore delle Norme Tecniche per le Costruzioni del 2008, per ogni costruzione

ci si doveva invece riferire ad una accelerazione di riferimento "propria" individuata sulla base delle

coordinate geografiche dell'area di progetto e in funzione della vita nominale dell'opera. Un valore di

pericolosità di base, dunque, definito per ogni punto del territorio nazionale, su una maglia quadrata di 5 km

di lato, indipendentemente dai confini amministrativi comunali.

La classificazione sismica (zona sismica di appartenenza del comune) rimane utile solo per la gestione della

pianificazione e per il controllo del territorio da parte degli enti preposti (Regione, Genio civile, ecc.).

Infine, il 20 febbraio 2018 in Gazzetta Ufficiale sono state pubblicate le nuove Norme Tecniche per le

Costruzioni (NTC 2018), approvate con Decreto del Ministero delle Infrastrutture il 17/01/2018. Le nuove

norme, composte da un decreto (tre articoli e un allegato di 12 capitoli) e una circolare esplicativa, entrano

in vigore il 22/03/2018.

Per ciò che riguarda in particolare la presente componente geologica, si segnala la riformulazione delle

categorie di sottosuolo, che vede eliminate le classi S1 e S2 e meglio definite le altre classi, chiarendo che la

priorità è quella dello studio della Risposta Sismica Locale eliminando la possibilità di una classificazione

diretta sulla base del valore del NSPT e della resistenza non drenata. È stata lasciata però al progettista la

facoltà di determinare la velocità di propagazione delle onde di taglio nel terreno utilizzando correlazioni

empiriche (a scelta del progettista e consolidate nella letteratura scientifica) con i risultati di prove in sito.

GEOINVEST s.r.l.
Geologia-Geofisica

7.1.3 Normativa sismica a livello regionale

In relazione all'Ordinanza n. 3274/2003, Regione Lombardia ha emanato la d.g.r. 7 novembre 2003, n. 7/14964, che ha preso atto della classificazione fornita in prima applicazione dalla citata Ordinanza. Successivamente, con d.g.r. 11/07/2014 – n.10/2129, la Regione Lombardia definisce una nuova classificazione sismica riportata nella figura seguente.

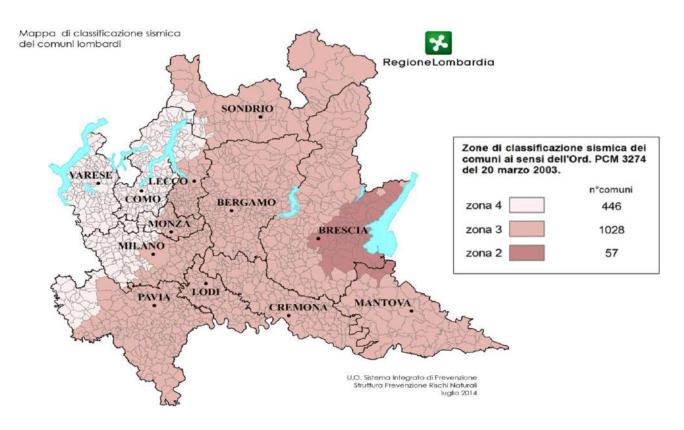


Fig. 39 - Classificazione sismica dei comuni lombardi (d.g.r. 2129/2014).

A seguire, la d.g.r. 10/10/2014 – n.10/2489 – "Differimento del termine di entrata in vigore della nuova classificazione sismica del territorio approvata con d.g.r. 21 Luglio 2014, n. 2129 "Aggiornamento delle zone sismiche in Regione Lombardia" (I.r. 1/2000, art.3, comma 108, lettera d)" deliberò di:

- differire al 14 ottobre 2015 il termine dell'entrata in vigore della d.g.r. 21 luglio 2014, n.2129;
- disporre che nelle more dell'entrata in vigore della nuova classificazione sismica, nei Comuni che saranno riclassificati dalla Zona 4 alla Zona 3 e dalla Zona 3 alla Zona 2, tutti i progetti delle strutture riguardanti nuove costruzioni – pubbliche e private – siano redatti in linea con le norme tecniche vigenti, rispettivamente, nelle Zone 3 e 2.

Più recentemente la Giunta Regionale ha approvato la **d.g.r. n. X/5001 del 30 marzo 2016**, che indica le linee di indirizzo e coordinamento per l'esercizio delle funzioni trasferite ai comuni in materia sismica, ai sensi degli artt. 3, comma 1, e 13, comma 1, della **l.r. 33/2015**.

R4251 - 70/129

La nuova zonazione sismica e la l.r. 33/2015 sono entrambe efficaci dal 10 aprile 2016.

In particolare, la l.r. 33/2015 aggiorna la normativa sulle costruzioni in zona sismica adeguandola al D.P.R. 6

giugno 2001, n. 380 (Testo Unico in materia Edilizia).

Le nuove norme si applicano ai lavori di cui all'art. 93, comma 1, del D.P.R. 380/2001 ("costruzioni, riparazioni

e sopraelevazioni"), relativi a opere pubbliche o private localizzate nelle zone dichiarate sismiche, comprese

le varianti influenti sulla struttura che introducano modifiche tali da rendere l'opera stessa, in tutto o in parte,

strutturalmente diversa dall'originale o che siano in grado di incidere sul comportamento sismico

complessivo della stessa.

Le novità immediate introdotte dalla l.r. 33/2015 e dalla d.g.r. 5001/2016 sono:

trasferimento ai comuni delle competenze in materia di opere o costruzioni e vigilanza in zone

sismiche, per le opere ricadenti sul loro territorio,

per i comuni in zona sismica 2 (alta sismicità): obbligo dell'autorizzazione preventiva all'avvio dei lavori,

per i comuni in zona 3 e 4 (sismicità bassa e molto bassa): obbligo del deposito della documentazione

relativa al progetto prima dell'avvio dei lavori,

attività di controllo sistematico degli interventi relativi a opere o edifici pubblici o, in genere, edifici

destinati a servizi pubblici essenziali, ovvero progetti relativi ad opere, comunque, di particolare

rilevanza sociale o destinate allo svolgimento di attività, che possono risultare, in caso di evento

sismico, pericolose per la collettività,

attività di controllo su tutti gli altri tipi di edifici in tutte le zone sismiche.

In termini di adeguamento della componente sismica del PGT occorre fare riferimento a:

- d.g.r 22 dicembre 2005 – n. 8/1566 (Criteri ed indirizzi per la definizione della componente geologica,

idrogeologica e sismica del Piano di Governo del Territorio, in attuazione dell'art. 57, comma 1, della

I.r. 11 marzo 2005, n.12)

d.g.r. 30 novembre 2011 – n. 9/2616 (Aggiornamento dei "Criteri ed indirizzi per la definizione della

componente geologica, idrogeologica e sismica del Piano di Governo del Territorio, in attuazione

dell'art. 57, comma 1, della l.r. 11 marzo 2005, n.12", approvati con d.g.r. 22 dicembre 2005, n.

8/1566 e successivamente modificati con d.g.r. 28 maggio 2008, n. 8/7374). La direttiva d.g.r. 30

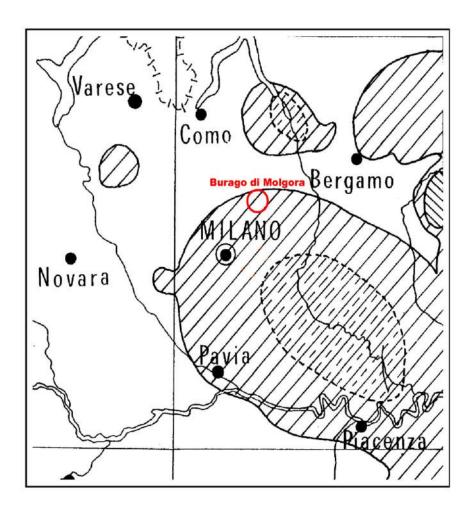
novembre 2011 – n.9/2616 era stata redatta in conformità al D.M. 14 gennaio 2008 "Norme tecniche

per le costruzioni" da cui furono riprese le indicazioni relative all'azione sismica.

GEOINVEST s.r.l.
Geologia-Geofisica

d.g.r. 15 dicembre 2022 – n. XI/7564 (Integrazione dei criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio relativa al tema degli sprofondamenti (sinkhole) (Art. 57 della I.r. 11 marzo 2005, n. 12))

7.2 Attività sismica ed elementi neotettonici e strutturali, con cenni sulla sismicità del territorio


L'area comunale e quella provinciale nel suo complesso risultano caratterizzate da eventi sismici piuttosto sporadici e di intensità massima rilevata dell'ordine del VI° della scala Mercalli, come riscontrabile dai seguenti riferimenti bibliografici:

- Carta sismica d'Italia per il periodo 1893 1965 con le aree di massima intensità scala 1:1.000.000
 (E. laccarino per il Comitato Nazionale Energia Nucleare Gruppo Attività Minerarie; Boschi E., Favali
 P., Scalera G. & Smeriglio G., 1995) in Fig. 40;
- Massima intensità macrosismica risentita in Italia scala 1:1.500.000 (Istituto Nazionale di Geofisica)
 in Fig. 41;
- Carta degli Ipocentri (Gasperini et al.) in Fig. 42;
- Catalogo Parametrico dei Terremoti Italiani 2015 (Database Macrosismico Italiano 2015 INGV) in Fig. 43, Fig. 44, Fig. 45 e Fig. 46.
- Carta delle massime intensità macrosismiche osservate nei comuni della Regione Lombardia (Molin D., Stucchi M. & Valensise G., 1996 "Sicurezza 96" Milano Fiera, 26-30/11/96) in Fig. 47.

I maggiori terremoti lombardi si sono sviluppati nella zona bresciana, mentre nell'area brianzola gli eventi tellurici hanno sviluppato una magnitudo poco rilevante ed hanno risentito indirettamente dell'attività sismica dei comparti sismogenetici confinanti (aree appenniniche e zona bresciana in particolare).

LEGENDA

Arce che sono state interessate da eventi sismici con intensità massima rilevata pari al VI° grado della Scala Mercalli.

Aree che sono state interessate da eventi sismici con intensità massima rilevata pari al VI° - VII° grado della Scala Mercalli.

Aree che sono state interessate da eventi sismici con intensità massima rilevata pari al VII° grado della Scala Mercalli.

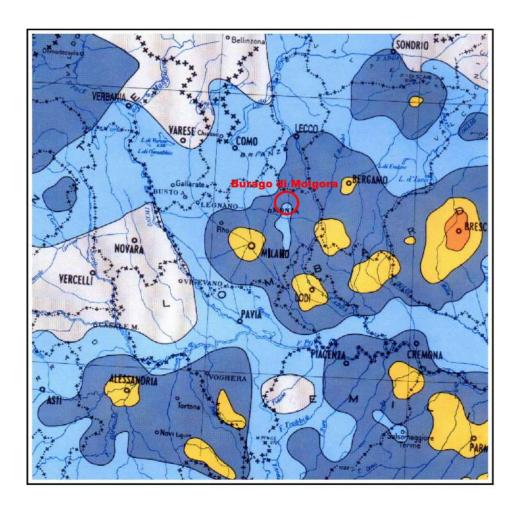


Fig. 40. Estratto della Carta Sismica d'Italia, periodo 1893-1965, con Aree di Massima Intensità.

LEGENDA

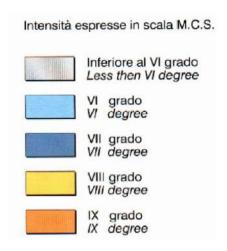
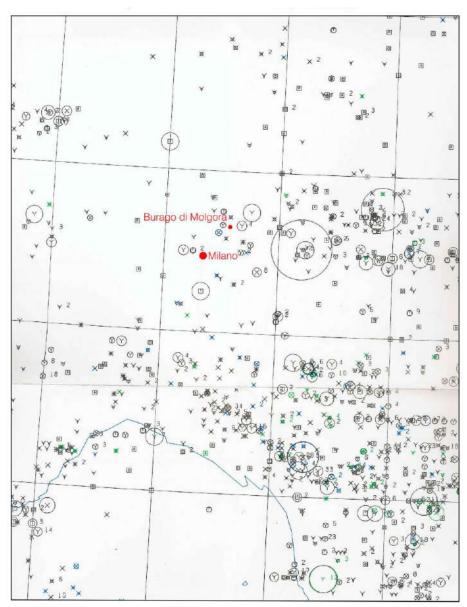



Fig. 41. Estratto della Carta della Massima Intensità risentita in Italia.

Nel caso di terremoti che si sono ripetuti nello stesso luogo in periodi di tempo diversi può capitare che i diversi periodi sismici abbiano interessato diverse classi di profondità. Per evitare ambiguità e confusioni grafiche si è stabilito di rappresentare il foccialo sismico con il colore e il raggio che competono al terremoto a cui corrisponde la massima intensità; si hanno poi cerchi concentrici con raggi che decrescono di 0,5 mm con colori corrispondenti alle altre classi di profondità interessate. Il numero totale di eventi che nel catalogo interessano lo stesso foccialo sismico viene indicato a lato del simbolo centrale. Nel caso di terremoti che si sono ripetuti nello stes-

le.
Il colore del simbolo centrale è ancora quello che
cumpete all'evento di massima intensità della soquenza di terremoti coincidenti, e il simbolo centrale
è scelto in relazione alla classe di attendibilità della localizzazione epicentrale. In particolare i simboli utilizzati sono i seguenti:

- attendibilità della localizzazione inferiore a 10 Km
- attendibilità della localizzazione inferiore a 25 Km
- attendibilità della localizzazione inferiore a 50 Km

attendibilità della localizzazione superiore a 50 Km

Fig. 42. Estratto della Carta degli Epicentri (Gasperini et al.)

ID Events	Comuna	Provincia	Massima Intensità	Numero di
ID_Evento	Comune	Provincia	risentita	terremoti risentiti
IT_12783	Agliate	MB	4	1
IT_12492	Aicurzio	MB	3	1
IT_10694	Airuno	LC	F	2
IT_12507	Albiate	MB	3	3
IT_14269	Ambivere	BG	D	2
IT_14278	Arcene	BG	NF	2
IT_12519	Arcore	MB	4	2
IT_10731	Arosio	CO	3	1
IT_14295	Arzago d'Adda	BG	NF	2
IT_10748	Barzago	LC	5	4
IT_10759	Barzanò	LC	3	3
IT_12559	Basiano	MI	2-3	3
IT_12567	Bellinzago Lombardo	MI	3-4	2
IT_12569	Bellusco	MB	NF	2
IT_12573	Bernareggio	MB	NF	3
IT_12604	Besana in Brianza	MB	5-6	6
IT_12641	Biassono	MB	5	3
IT_14381	Boltiere	BG	NF	2
IT_14382	Bonate Sopra	BG	3	1
IT_14388	Bonate Sotto	BG	3-4	3
IT_13633	Bornago	MI	3-4	1
IT_14391	Bottanuco	BG	6	3
IT_12697	Bovisio Masciago	MB	4	2
IT_14413	Brembate	BG	5	4
IT_12710	Bresso	MI	4	4
IT_12713	Briosco	MB	4	1
IT_10804	Brivio	LC	4-5	5
IT_12728	Brugherio	MB	3	2
IT_10815	Bulciago	LC	2-3	1
IT_12743	Burago di Molgora	MB	NF	1
IT_12749	Busnago	MB	3	2
IT_12755	Bussero	MI	3	4
IT_10822	Cabiate	CO	4	1
IT_10836	Calco	LC	4-5	7
IT_14495	Calusco d'Adda	BG	6	5
IT_12765	Cambiago	MI	F	6
IT_12770	Camparada	MB	NF	1
IT_14511	Canonica d'Adda	BG	4-5	3
IT_14525	Capriate San Gervasio	BG	6	2
IT_14530	Caprino Bergamasco	BG	6	6
IT_12789	Carate Brianza	MB	4-5	5
IT_11326	Caravaggio	LC	2	1
IT_12800	Carnate	MB	NF	2
IT_12819	Carugate	MI	NF	2

Fig. 43. Estrazione dei terremoti in un raggio di 20 km da Burago di Molgora, fonte Catalogo Parametrico dei Terremoti Italiani 2015 - Database Macrosismico Italiano 2015 (INGV) (pag. 1/4).

ID Frants	6	Dunal-sta	Massima Intensità	Numero di
ID_Evento	Comune	Provincia	risentita	terremoti risentiti
IT_10884	Carugo	CO	3-4	2
IT_14566	Carvico	BG	F	4
IT_10911	Casatenovo	LC	3	3
IT_14576	Casirate d'Adda	BG	NF	2
IT_10940	Cassago Brianza	LC	NF	1
IT_12896	Cassano d'Adda	MI	6-7	4
IT_12907	Cassina de' Pecchi Cassina Nuova	MI MI	NF NF	2 1
IT_12664 IT_14596	Cassina Nuova Castel Rozzone	BG	NF NF	2
	astello di Brianza (Cologn	LC	NF	1
IT_12938	Cavenago di Brianza	MB	3-4	3
IT_14534	Celana	BG	3	1
IT 10989	Cernusco Lombardone	LC	NF	2
IT_12952	Cernusco sul Naviglio	MI	6	8
IT_12982	Cesano Maderno	MB	4	1
IT_12985	Cinisello Balsamo	MI	5	2
IT_14653	Cisano Bergamasco	BG	4	3
IT_14661	Ciserano	BG	4-5	3
IT_11032	Colle Brianza (Nava)	LC	3-4	2
IT_13008	Comazzo	LO	NF	2
IT_11421	Contra	LC	3	1
IT_13043	Cormano	MI	3-4	1
IT_13054	Cornate d'Adda	MB	3-4	3
IT_13077	Correzzana	MB	NF -	1
IT_11117	Cremella	LC	F	3
IT_13115	Cusano Milanino	MI	3	1
IT_14767	Dalmine Desio	BG MB	6 5	4 5
IT_13119 IT_11143	Dolzago	LC	NF	1
IT 14798	Fara Gera d'Adda	BG	5	3
IT_14803	Filago	BG	6	5
IT_13160	Gessate	MI	5	3
IT_13167	Giussano	MB	NF	1
IT_13173	Gorgonzola	MI	4	11
IT_13188	Grezzago	MI	2-3	2
IT_12900	Gropello d'Adda	MI	4	1
IT_11276	Imbersago	LC	4-5	3
IT_13204	Inzago	MI	3-4	3
IT_13248	Lesmo	MB	3	2
IT_13263	Limbiate	MB	NF	2
IT_13612	Linate	MI	F	1
IT_13275	Liscate	MI	7-8	3
IT_13279	Lissone	MB	3-4	3
IT_11328	Lomagna	LC	3	4
IT_11590	Loreto	LC	3	1

Fig. 44. Estrazione dei terremoti in un raggio di 20 km da Burago di Molgora, fonte Catalogo Parametrico dei Terremoti Italiani 2015 - Database Macrosismico Italiano 2015 (INGV) (pag. 2/4).

			Massima Intensità	Numero di
ID_Evento	Comune	Provincia	risentita	terremoti risentiti
IT_13340	Macherio	MB	D	3
IT_14946	Madone	BG	NF	1
IT_14948	Mapello	BG	5-6	4
IT_11371	Mariano Comense	CO	4	4
IT_13372	Masate	MI	3	4
IT_13384	Meda	MB	3-4	3
IT_14963	Medolago	BG	2-3	3
IT_13421	Melzo Merate	MI LC	4-5 4-5	5
IT_11401 IT_13426	Merlino	LO	4-3 6	10 2
IT_13420	Mezzago	MB	3	2
IT_11442	Missaglia	LC	3-4	4
IT_12620	Montesiro	MB	3	1
IT_11491	Montevecchia	LC	F	1
IT_11500	Monticello Brianza	LC	5	3
IT_13492	Monza	MB	7-8	29
IT_11522	Nibionno	LC	NF	1
IT_13542	Novate Milanese	MI	3	2
IT_11556	Olgiate	LC	3	1
IT_11551	Olgiate Molgora (Canova	LC	2-3	2
IT_13565	Ornago	MB	NF	3
IT_15044	Osio Sopra	BG	NF	2
IT_15047	Osio Sotto	BG	2-3	2
IT_11592	Osnago	LC	NF	1
IT_10988	Osnago	LC	3	1
IT_11601	Paderno d'Adda	LC	3 5	3
IT_13581	Paderno Dugnano Pagnano-Cicognola	MI LC	4	1 1
IT_11403 IT_13584	Pagnano-Cicognola Pantigliate	MI	NF	3
IT_10993	Paravino	LC	F	2
IT_11616	Perego	LC	3	2
	schiera Borromeo (Betto		NF	4
550	sano con Bornago (Pessa		3-4	2
IT_13662	Pioltello	MI	4	4
IT_15111	Ponte San Pietro	BG	5	6
IT_15135	Pontida	BG	6	3
IT_15138	Pontirolo Nuovo	BG	NF	1
IT_13669	Pozzo d'Adda	MI	4-5	2
IT_13673	Pozzuolo Martesana	MI	3-4	3
IT_15152	Presezzo	BG	2	2
IT_14953	Prezzate	BG	3-4	1
IT_13681	Renate	MB	2	2
IT_19126	Rivolta d'Adda	CR	5	4
IT_11673	Robbiate	LC	NF	1

Fig. 45. Estrazione dei terremoti in un raggio di 20 km da Burago di Molgora, fonte Catalogo Parametrico dei Terremoti Italiani 2015 - Database Macrosismico Italiano 2015 (INGV) (pag. 3/4).

ID_Evento	Comune	Provincia	Massima Intensità risentita	Numero di terremoti risentiti
IT_13720	Ronco Briantino	MB	3	2
IT_11698	Rovagnate	LC	3-4	3
IT_71989	Sabbio Bergamasco	BG	6	1
T_72224	San Genesio	LC	SF	1
T 10888	Sant'Ambrogio	СО	4	1
T_11729	Santa Maria Hoè	LC	3-4	4
T_11406	Sartirana	LC	4	2
IT_13867	Segrate	MI	F	1
IT_13888	Seregno	MB	5	6
IT_13891	Sesto San Giovanni	MI	5	10
IT_13904	Settala	MI	6	2
IT_13912	Seveso	MB	3-4	1
IT_11759	Sirone	LC	3-4	1
IT_11765	Sirtori	LC	NF	1
IT_15367	Solza	BG	6	2
IT_15382	otto il Monte Giovanni XX	BG	6	2
IT_13939	Sovico	MB	4	2
IT_15407	Suisio	BG	6	3
IT_13942	ulbiate (Sulbiate Inferiore	MB	NF	2
IT_15424	Terno d'Isola	BG	3	2
IT_13674	Trecella	MI	4	1
IT_15474	Treviglio	BG	6-7	23
IT_13964	Trezzano Rosa	MI	NF	1
IT_13970	Trezzo sull'Adda	MI	NF	2
IT_13997	Triuggio	MB	3-4	1
IT_14028	Usmate Velate (Usmate)	MB	3	1
IT_11832	Valgreghentino	LC	NF	2
IT_14053	Vaprio d'Adda	MI	4-5	7
IT_14062	Vedano al Lambro	MB	NF	1
IT_15547	Verdellino	BG	5	3
IT_15553	Verdello	BG	5	6
IT_11894	Verderio (Inferiore)	LC	3	3
IT_11906	Viganò	LC	NF	2
IT_14096	Vignate	MI	NF	4
IT_15572	Villa d'Adda	BG	F	3
IT_14108	Villasanta	MB	NF	3
IT_14123	Vimercate	MB	5	9
IT_14132	Vimodrone	MI	2-3	2
IT_15548	Zingonia	BG	6	1
IT_12630	Zoccorino	MB	3	1

Fig. 46. Estrazione dei terremoti in un raggio di 20 km da Burago di Molgora, fonte Catalogo Parametrico dei Terremoti Italiani 2015 - Database Macrosismico Italiano 2015 (INGV) (pag. 4/4).

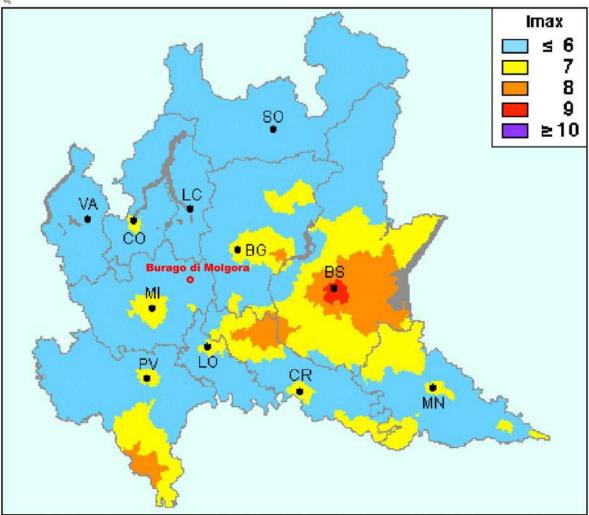


Fig. 47. Carta della Massime Intensità Macrosismiche osservate nei Comuni della Regione (Molin et al.).

Per quel che attiene all'aspetto sismotettonico, la zona in studio ricade in un ambito caratterizzato (M.S. Barbano et al., 1982) da uno spessore crostale dell'ordine dei 25÷30 Km e da una sismicità bassa. Infatti, in tale porzione della Lombardia l'attività sismica è da considerarsi ovunque scarsa.

Tutto ciò trova giustificazione, dal punto di vista geologico, nella collocazione del territorio in esame all'interno di una vasta area caratterizzata da un notevole spessore di depositi alluvionali, che è stata interessata in passato da fenomeni di sollevamento modesti e pressoché continui nel Pliocene e in parte nel Pleistocene inferiore, a cui sono succeduti deboli sollevamenti (Fig. 48).

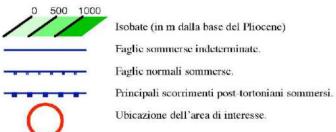
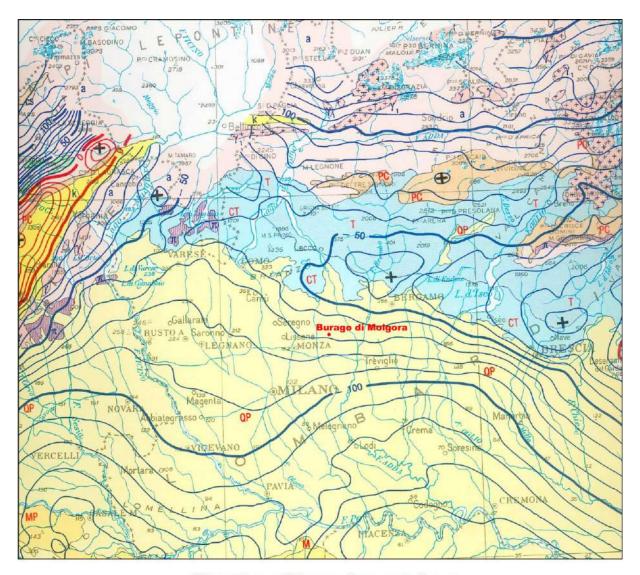



Fig. 48. Estratto del Modello Strutturale d'Italia (Barberi et al.).

Va inoltre fatto notare che l'area su cui ricade il territorio comunale, pur trovandosi a distanza piuttosto modesta rispetto a strutture sepolte della pianura o del pedemonte (Fig. 49), alcune delle quali si ritiene non abbiano ancora raggiunto un assetto tettonico definitivo, non risulta comunque direttamente interessata da alcuna di esse come osservabile anche dall'assenza di fenomeni morfologici particolari.

Carta Gravimetrica

Fig. 49. Estratto della Carta Gravimetrica d'Italia (Servizio Geologico d'Italia).

7.3 La Pericolosità Sismica Locale

7.3.1 Premessa

A seguito dell'aggiornamento normativo della Regione Lombardia introdotto con la d.g.r. 2129/2014 il territorio **Comunale di Burago di Molgora** è stato classificato nella **Zona 3**.

ELENCO DEI COMUNI CON INDICAZIONE DELLE RELATIVE ZONE SISMICHE E DELL'ACCELERAZIONE MASSIMA (AGMAX) PRESENTE ALL'INTERNO DEL TERRITORIO COMUNALE (O.P.C.M. 3519/06 E DECRETO MIN. INFRASTRUTTURE 14/01/08)

ISTAT	Provincia	Comune	Zona Sismica	AgMax
03108013	MB	BURAGO DI MOLGORA	3	0,068873

L'area d'interesse è classificata a rischio sismico medio-basso (Zona 3). L'accelerazione orizzontale prevista su suolo rigido ($V_s > 800 \text{ m/s}$) è di Agmax= **0,068873 g**.

Come contemplato dalla citata d.g.r. n.9/2616 del 30/11/2011, si è quindi provveduto ad analizzare le problematiche inerenti la sismicità locale ed a predisporre la Carta della Pericolosità Sismica Locale, con alcuni approfondimenti di secondo livello in aree selezionate.

7.3.2 Analisi e valutazione degli effetti di sito finalizzati alla definizione dell'aspetto sismico nei Piani di Governo del Territorio (d.g.r. 30 novembre 2011, n.9/2616)

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono <u>funzione delle caratteristiche morfologiche e stratigrafiche</u> che determinano la risposta sismica locale.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza P_{VR} , nel periodo di riferimento V_R . In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

Effetti di sito o di amplificazione sismica locale: interessano tutti i terreni che mostrano un comportamento stabile nei confronti delle sollecitazioni sismiche attese; tali effetti sono rappresentati dall'insieme delle modifiche in ampiezza, durata e contenuto in frequenza che un moto sismico (terremoto di riferimento), relativo ad una formazione rocciosa di base (bedrock), può subire, durante l'attraversamento degli strati di terreno sovrastanti il bedrock, a causa dell'interazione delle onde sismiche con le particolari condizioni locali.

Tali effetti si distinguono in due gruppi che possono essere contemporaneamente presenti nello stesso sito:

gli effetti di amplificazione topografica si verificano quando le condizioni locali sono rappresentate

da morfologie superficiali più o meno articolate e da irregolarità topografiche in generale; tali

condizioni favoriscono la focalizzazione delle onde sismiche in prossimità della cresta del rilievo a

seguito di fenomeni di riflessione sulla superficie libera e di interazione fra il campo d'onda incidente

e quello diffratto; se l'irregolarità topografica e rappresentata da substrato roccioso (bedrock) si

verifica un puro effetto di amplificazione topografica, mentre nel caso di rilievi costituiti da materiali

non rocciosi l'effetto amplificatorio e la risultante dell'interazione (difficilmente separabile) tra

l'effetto topografico e quello litologico;

gli effetti di amplificazione litologica si verificano quando le condizioni locali sono rappresentate da

morfologie sepolte (bacini sedimentari, chiusure laterali, corpi lenticolari, eteropie ed

interdigitazioni, gradini di faglia ecc.) e da particolari profili stratigrafici costituiti da litologie con

determinate proprietà meccaniche; tali condizioni possono generare esaltazione locale delle azioni

sismiche trasmesse dal terreno, fenomeni di risonanza fra onda sismica incidente e modi di vibrare

del terreno e fenomeni di doppia risonanza fra periodo fondamentale del moto sismico incidente e

modi di vibrare del terreno e della sovrastruttura.

Gli effetti di instabilità: interessano tutti i terreni che mostrano un comportamento instabile o

potenzialmente instabile nei confronti delle sollecitazioni sismiche attese e sono rappresentati in generale

da fenomeni di instabilità consistenti in veri e propri collassi e talora movimenti di grandi masse di terreno

incompatibili con la stabilità delle strutture; tali instabilità sono rappresentate da fenomeni diversi a seconda

delle condizioni presenti nel sito.

Nel caso di versanti in equilibrio precario (in materiale sciolto in roccia) si possono avere fenomeni di

riattivazione o neoformazione di movimenti franosi (crolli, scivolamenti rotazionali e/o traslazionali e

colamenti), per cui il sisma rappresenta un fattore d'innesco del movimento sia direttamente a causa

dell'accelerazione esercitata sul suolo sia indirettamente a causa dell'aumento delle pressioni interstiziali.

Nel caso di aree interessate da particolari strutture geologiche sepolte e/o affioranti in superficie tipo contatti

stratigrafici o tettonici quali faglie sismogenetiche si possono verificare movimenti relativi verticali e

orizzontali tra diversi settori areali che conducono a scorrimenti e cedimenti differenziali interessanti le

sovrastrutture.

Nel caso di terreni particolarmente scadenti dal punto di vista delle proprietà fisico-meccaniche si possono

verificare fenomeni di scivolamento e rottura connessi a deformazioni permanenti del suolo; per terreni

granulari sopra falda sono possibili cedimenti a causa di fenomeni di densificazione ed addensamento del

GEOINVEST s.r.

R4251 - 84/129

materiale, mentre per terreni granulari fini (sabbiosi) saturi di acqua sono possibili fluimenti e colamenti

parziali o generalizzati a causa dei fenomeni di liquefazione.

Nel caso di siti interessati da carsismo sotterraneo o da particolari strutture vacuolari presenti nel sottosuolo

si possono verificare fenomeni di subsidenza più o meno accentuati in relazione al crollo parziale o totale di

cavità sotterranee.

7.3.2.1 Stati limite e relative probabilità di superamento

Nei confronti delle azioni sismiche, sia gli Stati limite di esercizio (SLE) che gli Stati limite ultimi (SLU) sono

individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi

strutturali, quelli non strutturali e gli impianti.

Gli Stati limite di esercizio (SLE) comprendono:

- Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso,

includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti in relazione

alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;

- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo

gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce

danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità

di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali, mantenendosi

immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Gli Stati limite ultimi (SLU) comprendono:

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture

e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali

cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione

conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza

nei confronti del collasso per azioni sismiche orizzontali;

Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi

rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti

strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo

margine di sicurezza nei confronti del collasso per azioni orizzontali.

Le probabilità di superamento nel periodo di riferimento PVR, cui riferirsi per individuare l'azione sismica

agente in ciascuno degli stati limite considerati, sono riportate nella tabella seguente:

GEOINVEST s.r.l.
Geologia-Geofisica

 $\textbf{Tab. 3.2.I} - \textit{Probabilità di superamento } P_{V_R} \textit{ in funzione dello stato limite considerato}$

Stati Limite	$\mathrm{P}_{\mathrm{V_{R}}}$: Probabilità di superamento nel periodo di riferimento V_{R}			
Stati limite di esercizio	SLO	81%		
Stati illilite di esercizio	SLD	63%		
Stati limite ultimi	SLV	10%		
Stati illinie utilin	SLC	5%		

7.3.2.2 Categorie di sottosuolo

Ai fini della definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale si valuta mediante specifiche analisi (modalità indicate nel § 7.11.3 - NTC2018). In alternativa, qualora le condizioni stratigrafiche e le proprietà dei terreni siano chiaramente riconducibili alle categorie di seguito definite, si può fare riferimento a un approccio semplificato che si basa sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio, V_S . I valori dei parametri meccanici necessari per le analisi di risposta sismica locale o delle velocità V_S per l'approccio semplificato costituiscono parte integrante della caratterizzazione geotecnica dei terreni compresi nel volume significativo (§ 6.2.2 - NTC 2018).

I valori di V_s sono ottenuti mediante specifiche prove oppure, con giustificata motivazione e limitatamente all'approccio semplificato, sono valutati tramite relazioni empiriche di comprovata affidabilità con i risultati di altre prove in sito, quali ad esempio le prove penetrometriche dinamiche per i terreni a grana grossa e le prove penetrometriche statiche per i terreni a grana fine.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, $V_{s,eq}$ (in m/s), definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$
 [3.2.1]

dove h_i e V_i indicano lo spessore (in m) e la velocità delle onde di taglio dello strato i-esimo, N il numero di strati e H la profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da V_S non inferiore a 800 m/s.

Per le fondazioni superficiali, la profondità del substrato è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione.

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio $V_{S,eq}$ è definita dal parametro $V_{5,30}$, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono:

Tab. 3.2.II - Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 delle norme. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

7.3.2.3 Condizioni topografiche

Per condizioni topografiche complesse è necessario predisporre specifiche analisi di risposta sismica locale. Per configurazioni superficiali semplici si può adottare la seguente classificazione:

Tab. 3.2.III - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i $> 30^{\circ}$

Le categorie topografiche si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m.

7.3.2.4 Procedure per l'analisi della sismicità del territorio e la redazione della carta della pericolosità sismica locale

La metodologia utilizzata si fonda sull'analisi di indagini dirette e prove sperimentali effettuate su alcune aree campione della Regione Lombardia, i cui risultati sono contenuti in uno «Studio-Pilota» redatto dal Politecnico di Milano - Dip. di Ingegneria Strutturale, reso disponibile sul SIT regionale.

Tale metodologia prevede tre livelli di approfondimento, di seguito sintetizzati:

1° Livello: riconoscimento delle aree passibili di amplificazione sismica sulla base sia di osservazioni geologiche (cartografia di inquadramento), sia di dati esistenti. Questo livello, obbligatorio per tutti i Comuni, prevede la redazione della Carta della pericolosità sismica locale, nella quale deve essere riportata la perimetrazione areale delle diverse situazioni tipo.

2° Livello: caratterizzazione semi-quantitativa degli effetti di amplificazione attesi nelle aree perimetrate nella carta di pericolosità sismica locale, che fornisce la stima della risposta sismica dei terreni in termini di valore di Fattore di Amplificazione (Fa).

Fa di soglia						
Intervallo	Suolo B	Suolo C	Suolo D	Suolo E		
0.1-0.5 s	1.4	1.9	2.2	2.0		
0.5-1.5 s	1.7	2.4	4.2	3.1		

L'applicazione del 2° livello consente l'individuazione delle aree in cui la normativa nazionale risulta insufficiente a salvaguardare dagli effetti di amplificazione sismica locale (Fa calcolato superiore a Fa di soglia comunali forniti dal Politecnico di Milano).

Per queste aree si dovrà procedere alle indagini ed agli approfondimenti di 3° livello o, in alternativa, utilizzare lo spettro di norma caratteristico della categoria di suolo superiore e, con il seguente schema:

- anziché lo spettro della categoria di suolo B si utilizzerà quello della categoria di suolo C; nel caso in cui la soglia non fosse ancora sufficiente si utilizzerà lo spettro della categoria di suolo D;
- anziché lo spettro della categoria di suolo C si utilizzerà quello della categoria di suolo D;
- anziché lo spettro della categoria di suolo E si utilizzerà quello della categoria di suolo D.

Il secondo livello è obbligatorio per i Comuni ricadenti nelle zone sismiche 2 e 3, nelle aree PSL, individuate attraverso il 1°livello, suscettibili di amplificazioni sismiche morfologiche e litologiche (zone Z3 e Z4 della Tabella 1 dell'Allegato 5) e interferenti con l'urbanizzato c/o con le aree di espansione urbanistica.

R4251 - 88/129

Per le aree a pericolosità sismica locale caratterizzate da effetti di instabilità, cedimenti e/o liquefazione e

per le zone di contatto tra litotipi con caratteristiche fisico meccaniche molto diverse (zone Z1, Z2a/b e Z5

della Tabella 1 dell'Allegato 5) non è prevista l'applicazione degli studi di 2° livello, ma il passaggio diretto a

quelli di 3° livello, come specificato al punto successivo.

3° Livello: definizione degli effetti di amplificazioni tramite indagini e analisi più approfondite. Al fine di poter

effettuare le analisi di 3° livello Regione Lombardia ha predisposto due banche dati, rese disponibili sul SIT

regionale.

Tale livello si applica in fase progettuale nei seguenti casi:

quando, a seguito dell'applicazione del 2° livello, si dimostra l'inadeguatezza della normativa sismica

nazionale all'interno degli scenari PSL caratterizzati da effetti di amplificazioni morfologiche e

litologiche (zone Z3 e Z4 della Tabella 1 dell'Allegato 5);

in presenza di aree caratterizzate da effetti di instabilità, cedimenti c/o liquefazione e zone di

contatto tra litotipi con caratteristiche fisico meccaniche molto diverse (zone Z1, Z2a/b e Z5).

Il 3° livello è obbligatorio nel caso in cui si stiano progettando costruzioni il cui uso prevede affollamenti

significativi, industrie con attività pericolose per l'ambiente, reti viarie e ferroviarie la cui interruzione

provochi situazioni di emergenza e costruzioni con funzioni pubbliche o strategiche importanti, sociali

essenziali.

Gli approfondimenti di 2° e 3° livello non devono essere eseguiti in quelle aree che, per situazioni geologiche,

geomorfologiche e ambientali o perché sottoposte a vincolo da particolari normative, siano considerate

inedificabili, fermo restando tutti gli obblighi derivanti dall'applicazione di altra normativa specifica.

Tale sovrapposizione non comporta quindi un automatico cambio di classe di fattibilità ma fornisce

indicazioni su dove poter utilizzare, in fase di progettazione, lo spettro di risposta elastico previsto dalla

normativa, oppure dove sia necessario realizzare preventivamente gli studi di 3° livello, fermo restando la

possibilità di utilizzare i parametri di progetto previsti dalla normativa nazionale per la zona sismica superiore.

7.3.2.5 Sintesi delle procedure

La prima tabella sotto riportata illustra in modo sintetico e esemplificativo, i percorsi da seguire, gli

adempimenti e le tempistiche in funzione della zona sismica di appartenenza e del livello di approfondimento

richiesto (fonte d.g.r. n. IX/2616). La seconda tabella illustra gli scenari di pericolosità sismica locale (fonte

d.g.r. n. IX/2616 modificata a seguito della d.g.r. 15 dicembre 2022 – n. XI/7564 (Sinkhole)) (Fig. 50).

GEOINVEST s.r.

	Livelli di approfondimento e fasi di applicazione							
	1^ livello	2 [^] livello	3^ livello					
	fase pianificatoria	fase pianificatoria	fase progettuale					
Zona sismica 2-3	obbligatorio	Nelle zone PSL Z3 e Z4 se interferenti con urbanizzato e urbanizzabile, ad esclusione delle aree già inedificabili	 Nelle aree indagate con il 2ⁿ livello quando Fa calcolato > valore soglia comunale; Nelle zone PSL Z1e Z2. 					

Sigla	SCENARIO PERICOLOSITÀ SISMICA LOCALE	EFFETTI
Z1a	Zona caratterizzata da movimenti franosi attivi	
Z1b	Zona caratterizzata da movimenti franosi quiescenti	Instabilità
Z1c	Zona potenzialmente franosa o esposta a rischio di frana	
Z2a	Zone con terreni di fondazione saturi particolarmente scadenti (riporti poco addensati, depositi altamente compressibili, ecc.)	Cedimenti
Z2b	Zone con depositi granulari fini saturi	Liquefazioni
Z2c	Aree a potenziale presenza di cavità sotterranee (sinkhole)	Crolli
Z3a	Zona di ciglio H > 10 m (scarpata, bordo di cava, nicchia di distacco, orlo di terrazzo fluviale o di natura antropica, ecc.)	Amplificazioni
Z3b	Zona di cresta rocciosa e/o cocuzzolo: appuntite – arrotondate	topografiche
Z4a	Zona di fondovalle e di pianura con presenza di depositi alluvionali e/o fluvio-glaciali granulari e/o coesivi	
Z4b	Zona pedemontana di falda di detrito, conoide alluvionale e conoide deltizio-lacustre	Amplificazioni
Z4c	Zona morenica con presenza di depositi granulari e/o coesivi (compresi le coltri loessiche)	litologiche e geometriche
Z4d	Zone con presenza di argille residuali e terre rosse di origine eluvio-colluviale	
Z5	Zona di contatto stratigrafico e/o tettonico tra litotipi con caratteristiche fisico-meccaniche molto diverse	Comportamenti differenziali

Fig. 50 - Tabella 1, Livelli di approfondimento e fasi di applicazione; Tabella 2, Scenari di pericolosità sismica locale (fonte d.g.r. n. XI/2616) modificata a seguito della d.g.r. 15 dicembre 2022 – n. XI/7564 (Sinkhole)).

7.3.3 Valutazione della Pericolosità Sismica Locale del Comune di Burago di Molgora - (1° Livello)

La normativa regionale prevede per tutti i Comuni, la redazione della Carta della Pericolosità Sismica Locale (PSL). Nella carta deve essere riportata la perimetrazione areale degli scenari di pericolosità secondo quanto stabilito dalla normativa regionale.

Dall'esame della *Carta della Pericolosità Sismica Locale* (Tav. 6, estratto in Fig. 51) si evidenzia che l'intero territorio comunale è classificato con la sigla **Z4a** "Zona di fondovalle con presenza di depositi alluvionali e/o fluvio-glaciali granulari e/o coesivi". Come si può osservare dalla tabella sopra riportata, i possibili effetti per la categoria **Z4a** sono essenzialmente limitati a possibili amplificazioni litologiche. Considerando il grado alto e molto alto di suscettività agli occhi pollini definito da PTCP per gran parte del territorio comunale (vedi Fig. 1), si sottolinea la potenziale presenza/evoluzione di cavità sotterranee che possono determinare fenomeni di sprofondamento ed effetti di instabilità/crolli.



Fig. 51. Carta della Pericolosità Sismica Locale (Tav. 6, fuori scala).

7.3.4 Caratterizzazione semi-quantitativa degli effetti di amplificazione attesi (Fa) – (2° Livello)

L'analisi di 2° livello prevede un approccio di tipo semi-quantitativo e fornisce una stima del valore del **Fattore** di amplificazione (Fa) dell'area. Il valore di Fa si riferisce agli intervalli di periodo tra 0.1-0.5 s e 0.5-1.5 s: i due intervalli di periodo nei quali viene calcolato il valore di Fa sono stati scelti in funzione del periodo proprio delle tipologie edilizie presenti più frequentemente nel territorio regionale, in particolare:

- l'intervallo tra 0.1-0.5 s si riferisce a strutture relativamente basse, regolari e piuttosto rigide;
- l'intervallo tra 0.5-1.5 s si riferisce a strutture più alte più flessibili.

La procedura semplificata richiede la conoscenza dei seguenti parametri:

- litologia prevalente dei materiali presenti nel sito;
- stratigrafia del sito;
- andamento della Vs con la profondità fino a valori pari o superiori a 800 m/s;
- spessore e velocità di ciascun strato.

Sulla base di intervalli indicativi di alcuni parametri geotecnici, quali curva granulometrica, parametri indice, numero di colpi delle prove SPT, si individua la litologia prevalente presente nel sito e per questa si sceglie la relativa scheda di valutazione di riferimento.

Attualmente sono disponibili:

- una scheda per le litologie prevalentemente ghiaiose;
- due schede per le litologie prevalentemente limoso-argillose (tipo 1 e tipo 2);
- due schede per le litologie prevalentemente limoso-sabbiose (tipo 1 e tipo 2);
- una scheda per le litologie sabbiose.

Una volta individuata la scheda di riferimento è necessario verificarne la validità in base all'andamento dei valori di V_s con la profondità; in particolare si dovrà verificare l'andamento della V_s con la profondità partendo dalla scheda tipo 1, nel caso in cui non fosse verificata la validità per valori di V_s inferiori ai 800 m/s si passerà all'utilizzo della scheda tipo 2. Nel caso di presenza di alternanze litologiche, che non presentano inversioni di velocità con la profondità, si potranno utilizzare le schede a disposizione solo se l'andamento dei valori di V_s con la profondità, nel caso da esaminare, risulta compatibile con le schede proposte. All'interno della scheda di valutazione si seleziona, in funzione della profondità e della velocità V_s dello strato superficiale, la curva più appropriata (indicate con il numero e il colore di riferimento) per la valutazione del valore di Fa nell'intervallo 0.1-0.5 s (curva 1, curva 2 e curva 3 e relative formule) e nell'intervallo 0.5-1.5 s (unica curva e relativa formula), in base al valore del periodo proprio del sito T.

Il periodo proprio del sito T necessario per l'utilizzo della scheda di valutazione è calcolato considerando tutta la stratigrafia fino alla profondità in cui il valore della velocità V_s è uguale o superiore a 800 m/s.

7.3.4.1 Indagini geofisiche per la ricostruzione del profilo Vs

Per una valutazione delle tipologie dei terreni di fondazione come definito dal D.M 17/01/2018 "Aggiornamento delle «Norme tecniche per le costruzioni»" sono state considerate una serie di misure sismiche passive e attive (HVSR e MASW) di studi comunali pregressi. Le informazioni bibliografiche e identificative sulle indagini geofisiche raccolte sono riassunte in Tabella 6; le ubicazioni di tutte le prove e gli esiti di alcune di esse sono riportate in Tav. 6, mentre la documentazione completa viene riportata in Allegato 3.

GEOINVEST s.r.
Geologia-Geofisica

PEC: geoinvest@legalmail.it

Tabella 6 - Informazioni bibliografiche e identificative sulle indagini **geofisiche** raccolte.

Cod. Indag.	Indirizzo	Autore	Data	MASW	HVSR	Sigla in Tav. 6
IGT0	Scuole Medie	Geoinvest s.r.l.	02/1986			
IGT1	Piano di Lottizzazione PEC1a	Geoinvest s.r.l.	02/2000			
IGT2	Via XXV 04/	Studio Geologico Tecnico Lecchese	01/2005			
IGT3	Via Martin Luther King	Geoplanet Studio Geologico	03/2005			
IGT4	Via Donizzetti	Dott. Geol. Riccardo Cortiana	12/2001			
IGT5	Via Mazzini	Studio Geoplan	01/2003			
IGT6	AT 1, tra S.P.211 e S.P.215	Fusina s.r.l.	04/2013			
IGT7	AT 3, via Dante	Studio Geoplan	09/2013			
IGT8	AT 4, via E. De Amicis - S.P.215	GeoArbor studio	01/2022	2		B1-B2
IGT9	Via Leopardi n. 16	Geotecno srl	03/2019			
IGT10	Via Luigi Galvani n.5	IPOGEO Studio Geologico		1		В3
IGT11	Via dell'Industria 3/A-3/B	GEO GROUP s.r.l.	05/2019			
IGT12	P.zza Matteotti	Dott. Ing. Cristiano Tomasi	05/2020			
IGT13	via Galileo Galilei n. 15	FAPA engineering srl	07/2020	1		B4
IGT14	via Galileo Galilei	IDROTECNA	07/2020			
IGT15	via Galvani 3	GEOPLAN s.r.l.			1	HV1
IGT16	presso stabilimento Salchi Metalcoat	GEO GROUP S.R.L.	07/2020	1	2	B5, HV2-HV3
IGT17	via Verdi	Dott. Geol. Gianbattista Fidanza	11/2020	1	1	B6, HV4
IGT18	via Leopardi	IDROTECNA	05/2020	1		В7
IGT19	Via Meucci 1	GEOCONSULT	01/2022	1		B8
IGT20	via Primo Villa 10	Geotecno srl	02/2011			
IGT21	via F. Turati	STUDIO GEOLOGICO BALLABIO	12/2021		1	HV5
IGT22	via Galileo Galilei n. 13	Geotest s.r.l.		2	6	B9-B10, HV6-HV11
IGT23	via Aldo Moro AT1	Fusina srl	02/2019	1		B11
IGT24	via Turati	ERA, Geol. Umberto Locati	12/2021		1	HV12
IGT25	via Caravaggio n. 24	Dott. Geol. Alessandro Ratazzi	03/2022			
IGT26	via E. Fermi n. 1	Dott. Geol. Alessandro Ratazzi	01/2022			
IGT27	presso stabilimento Salchi Metalcoat	GEOGROUP	07/2021	1	2	B12, HV13-HV14
IGT28	via E. Fermi n.1	Dott. Geol. Alessandro Ratazzi	09/2021			
IGT29	Banca Dati Geologica del Sottosuolo	Geoportale Lombardia	12/2023			

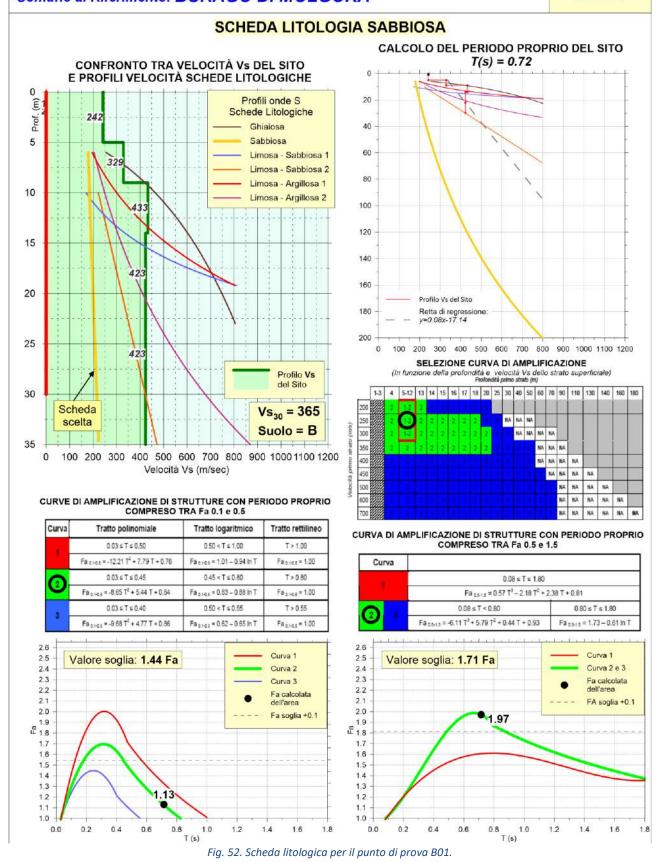
via della Conciliazione, 45/A - 29122 Piacenza Italia telefono 0523 593622 - fax 0523 593640 www.geoinvest.it - geoinvest@geoinvest.it PEC: geoinvest@legalmail.it

7.3.4.2 Stima del fattore di amplificazione

Per valutare il fattore di amplificazione in base alla normativa regionale il profilo di velocità delle "onde S" ottenuto è stato confrontato con quelli relativi alle singole schede litologiche di riferimento (Fig. 52 a Fig. 63).

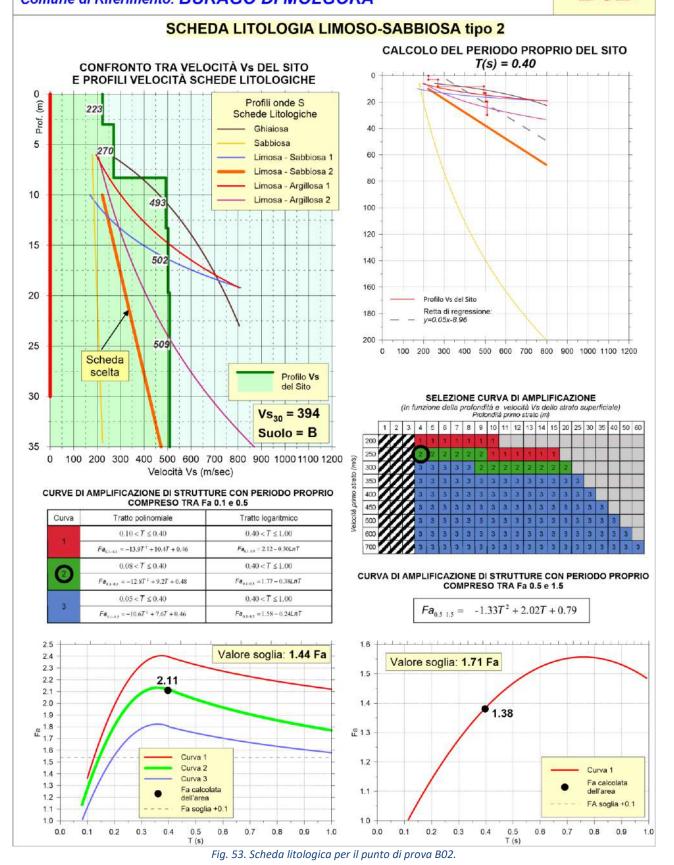
In base sia a criteri litologici che al profilo di velocità delle "onde S", per il calcolo dell'amplificazione sono state scelte le schede sabbiosa e limoso-sabbiosa tipo 2, che, in funzione della prova, ricomprendono l'intero profilo Vs nel campo di validità.

Per ogni punto di misura è stata definita la profondità del Bedrock sismico e assegnata una categoria di suolo da verificare.

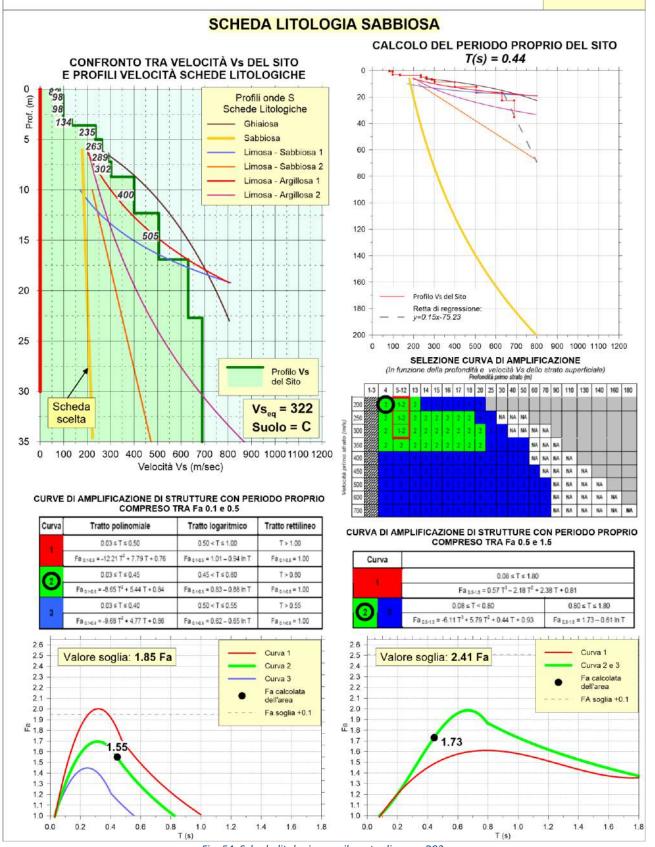

Il periodo proprio del sito è stato calcolato a partire dal profilo delle velocità V_s ricostruito mediante le prove MASW.

Punto di misura	Prof. Bedrock sismico	Periodo T di sito	Categoria di suolo assegnata e da verificare	Scheda litologica
B01	90	0.72	В	Sabbiosa
B02	50	0.40	В	Limo-sabbiosa 2
B03	70	0.44	С	Sabbiosa
B04	55	0.47	С	Limo-sabbiosa 2
B05	80	0.62	С	Sabbiosa
B06	130	1.02	С	Sabbiosa
B07	90	0.41	В	Sabbiosa
B08	80	0.63	В	Sabbiosa
B09	75	0.61	В	Sabbiosa
B10	90	0.70	В	Sabbiosa
B11	55	0.42	В	Limo-sabbiosa 2
B12	55	0.47	С	Sabbiosa

via della Conciliazione, 45/A - 29122 Piacenza Italia telefono 0523 593622 - fax 0523 593640 www.geoinvest.it - geoinvest@geoinvest.it PEC: geoinvest@legalmail.it



B02



via della Conciliazione, 45/A - 29122 Piacenza Italia

telefono 0523 593622 - fax 0523 593640 www.geoinvest.it - geoinvest@geoinvest.it PEC: geoinvest@legalmail.it

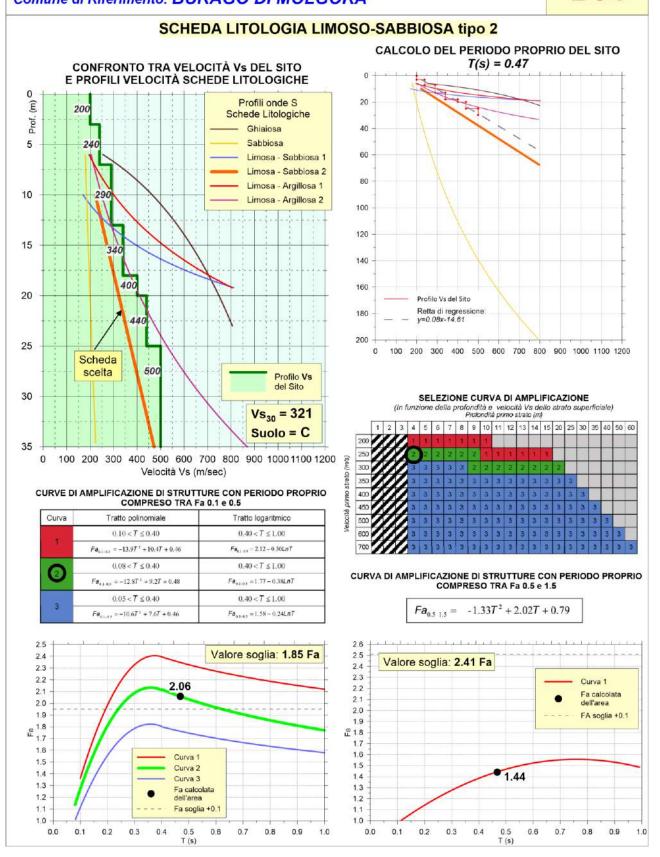


Fig. 55 - Scheda litologica per il punto di prova B04.

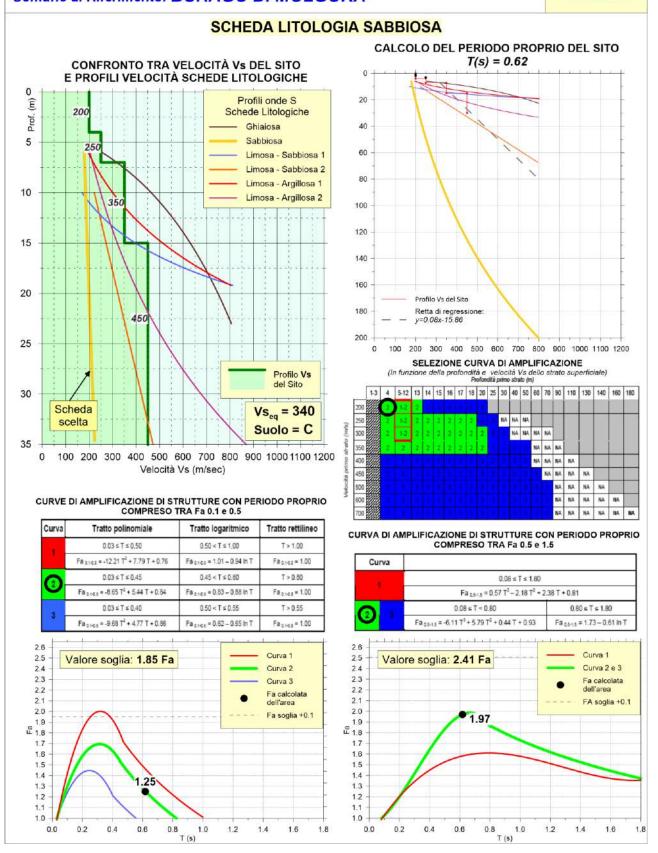


Fig. 56 - Scheda litologica per il punto di prova B05.

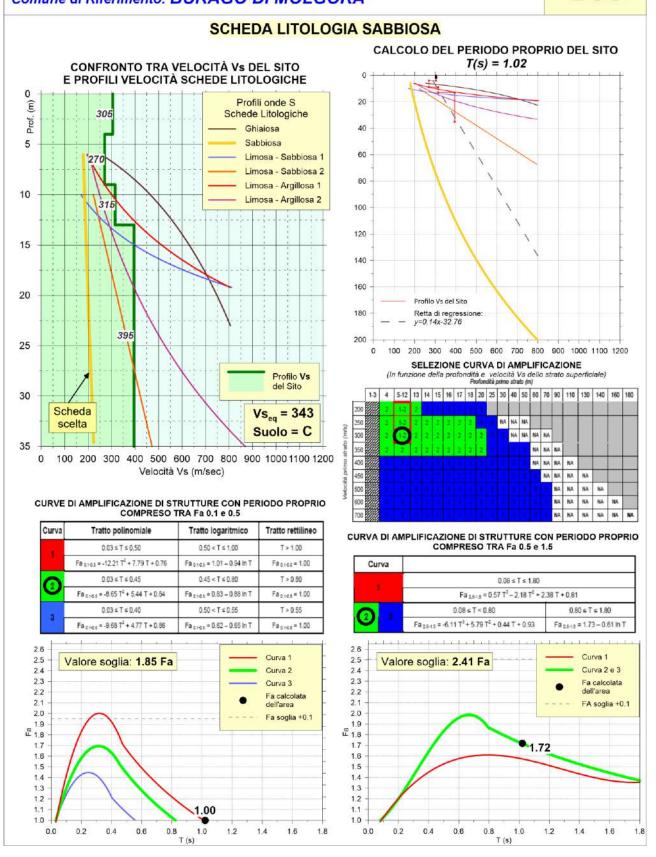


Fig. 57 - Scheda litologica per il punto di prova B06.

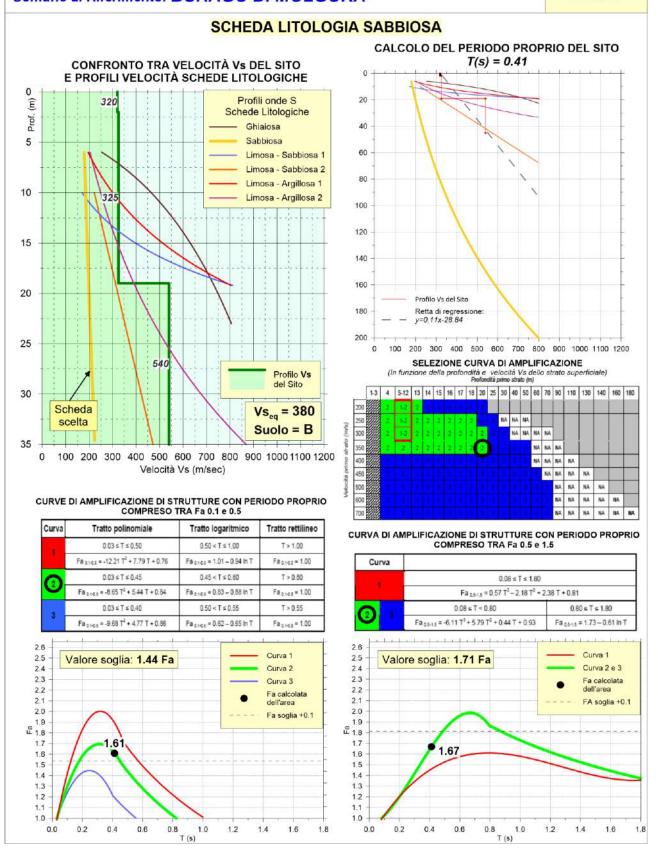


Fig. 58 - Scheda litologica per il punto di prova B07.

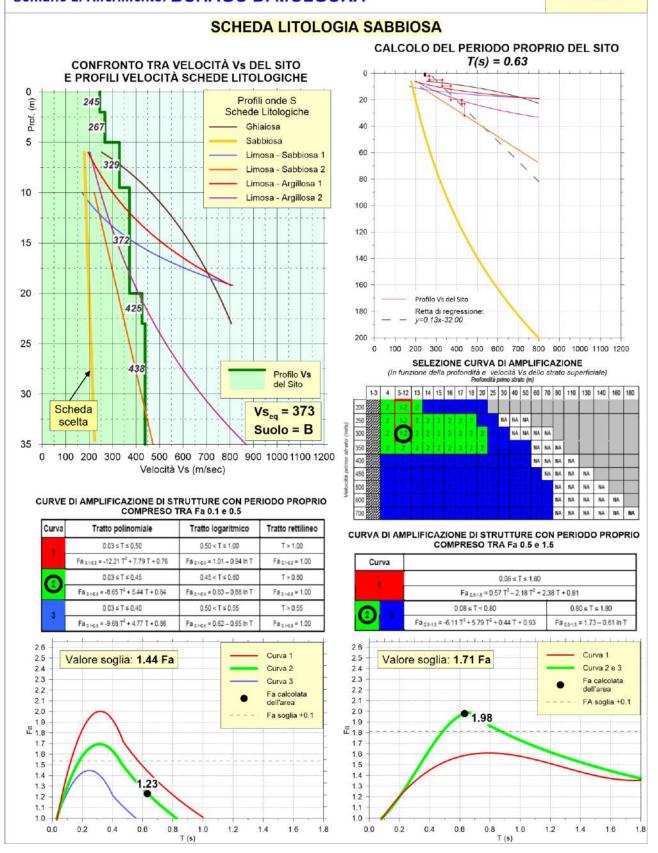


Fig. 59 - Scheda litologica per il punto di prova B08.

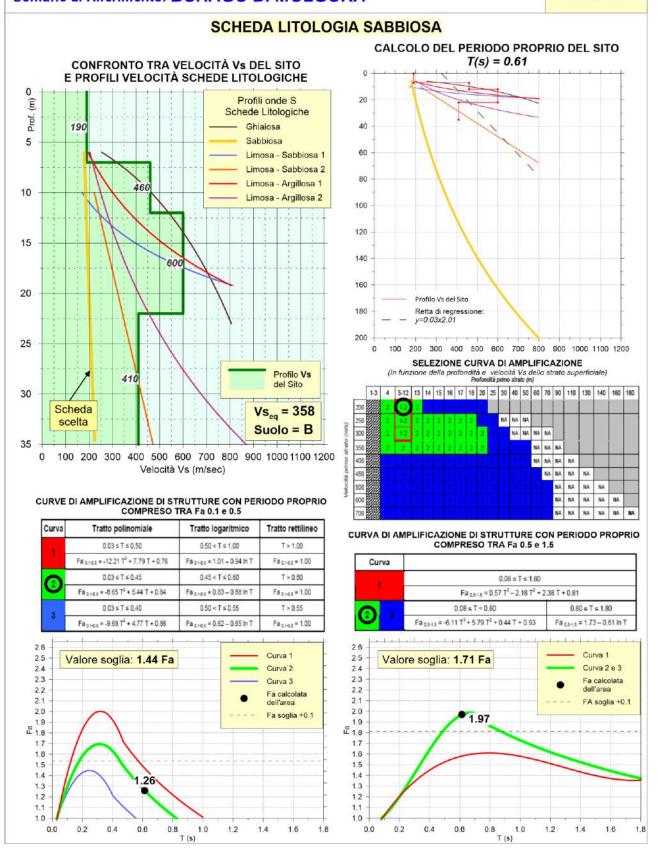


Fig. 60 - Scheda litologica per il punto di prova B09.

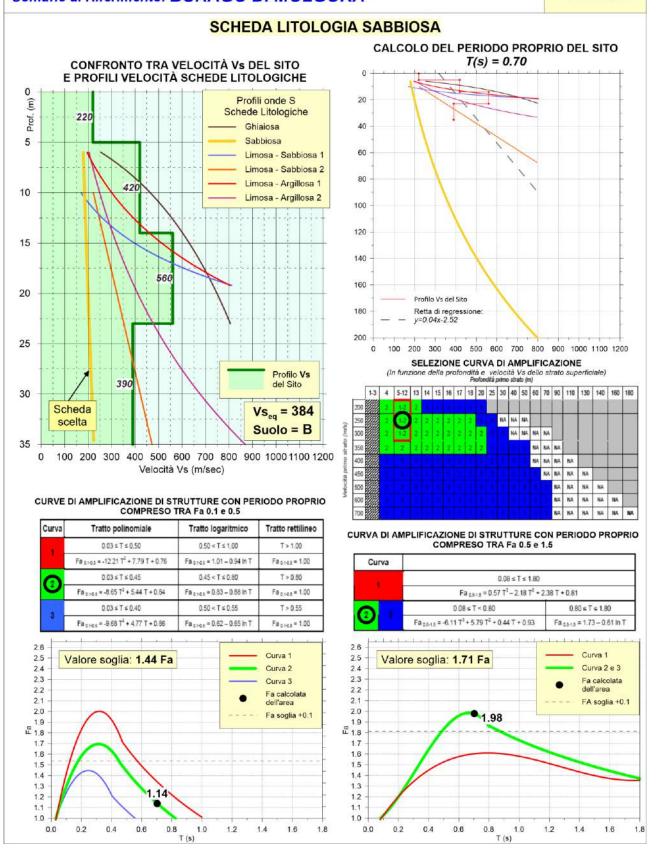


Fig. 61 - Scheda litologica per il punto di prova B10.

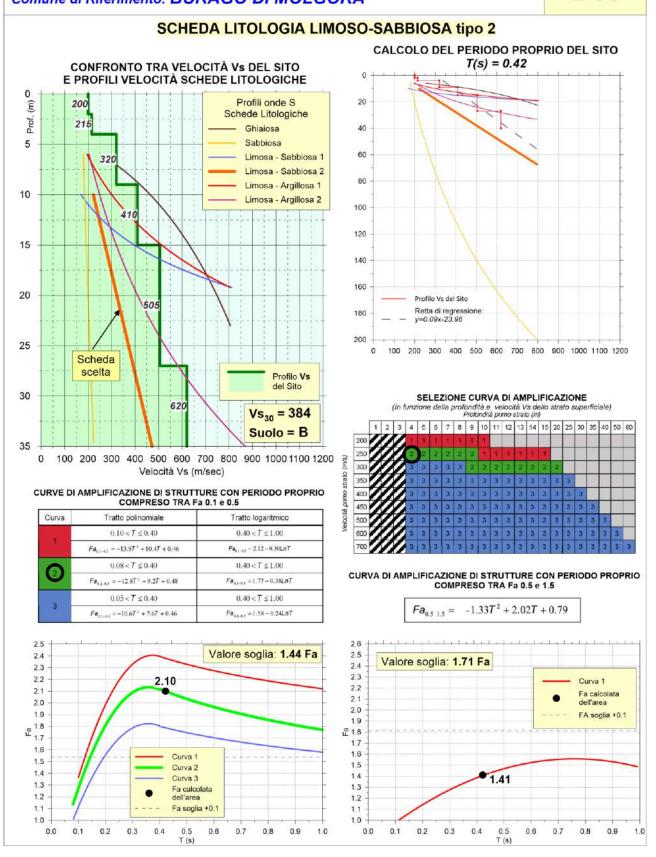


Fig. 62 - Scheda litologica per il punto di prova B11.

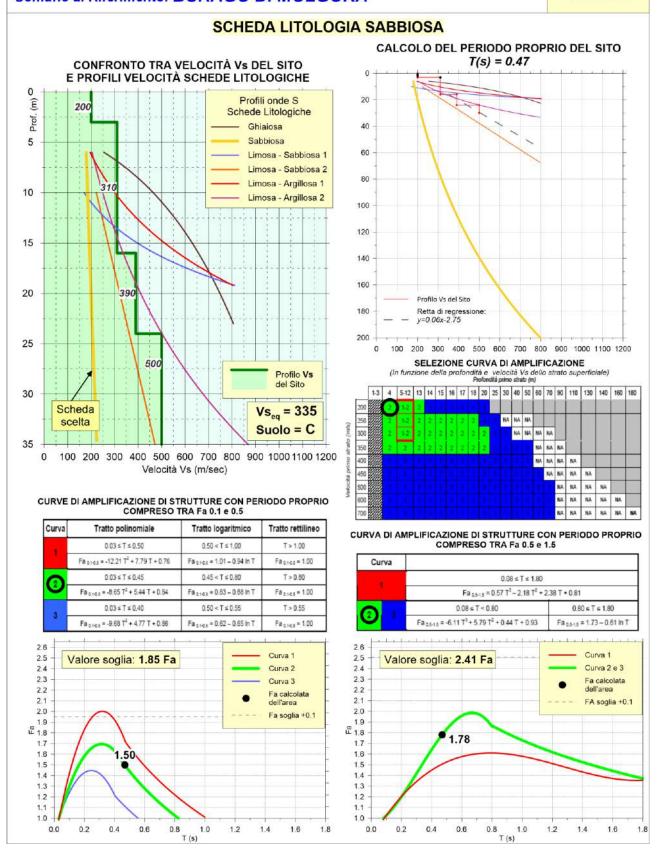


Fig. 63 - Scheda litologica per il punto di prova B12.

All'interno delle schede di valutazione, in base alla velocità degli strati superficiali, sono state scelte le curve 1 o 2. I fattori di amplificazione calcolati sono stati confrontati con i valori di soglia calcolati per il Comune dalla Regione Lombardia.

Punto di	Suolo da	Periodo tra 0.1 e 0.5 s		Periodo tra 0.5 e 1.5 s	
misura	verificare	Calcolato	Soglia	Calcolato	Soglia
B01	В	1.33	1.44 (+0.1)	1.97	1.71 (+0.1)
B02	В	2.11	1.44 (+0.1)	1.38	1.71 (+0.1)
B03	С	1.55	1.85 (+0.1)	1.73	2.41 (+0.1)
B04	С	2.06	1.85 (+0.1)	1.44	2.41 (+0.1)
B05	С	1.25	1.85 (+0.1)	1.97	2.41 (+0.1)
B06	С	1.00	1.85 (+0.1)	1.72	2.41 (+0.1)
B07	В	1.61	1.44 (+0.1)	1.67	1.71 (+0.1)
B08	В	1.23	1.44 (+0.1)	1.98	1.71 (+0.1)
B09	В	1.26	1.44 (+0.1)	1.97	1.71 (+0.1)
B10	В	1.14	1.44 (+0.1)	1.98	1.71 (+0.1)
B11	В	2.10	1.44 (+0.1)	1.41	1.71 (+0.1)
B12	С	1.50	1.85 (+0.1)	1.78	2.41 (+0.1)

Dai risultati delle elaborazioni si può evidenziare che:

- I valori del fattore di amplificazione calcolati per il periodo 0.1-0.5 s e calcolati per il periodo 0.5-1.5 s (riferibile a strutture alte e più flessibili) sono sempre inferiore ai valori soglia nei punti di verifica B03, B05, B06 e B12 pertanto la normativa nazionale è da ritenersi applicabile senza operare un declassamento della categoria di suolo.
- Il valore del fattore di amplificazione calcolato per il <u>periodo 0.1-0.5 s</u> risulta superiore alla soglia nei punti di verifica B02, B04, B07 e B11 mentre quello calcolato per il <u>periodo 0.5-1.5 s</u> risulta superiore alla soglia nei punti di verifica B01, B08, B09 e B10; perciò, la normativa nazionale NON è da ritenersi applicabile utilizzando il tipo di suolo 'da verificare'; si è quindi provveduto ad effettuare la verifica declassando i suoli come segue:
 - o i suoli da B a C (B01, B07, B08, B09, B10),
 - o i suoli da C a D (B04),
 - o i suoli da B a C, ottenendo valori ancora superiori alla soglia quindi di conseguenza declassando il suolo nuovamente da C a D (B02 e B11).

ottenendo in questo modo la compatibilità con la normativa nazionale (tabella seguente).

Punto di	Suolo da	Periodo tra 0.1 e 0.5 s		Periodo tra 0.5 e 1.5 s	
misura	verificare	Calcolato	Soglia	Calcolato	Soglia
B01	С			1.97	2.41 (+0.1)
B02	С	2.11	1.85 (+0.1)		
	D	2.11	2.20 (+0.1)		
B04	D	2.06	2.20 (+0.1)		
B07	С			1.67	2.41 (+0.1)
B08	С			1.98	2.41 (+0.1)
В09	С			1.97	2.41 (+0.1)
B10	С			1.98	2.41 (+0.1)
B11	С	2.10	1.85 (+0.1)		
	D	2.10	2.20 (+0.1)		

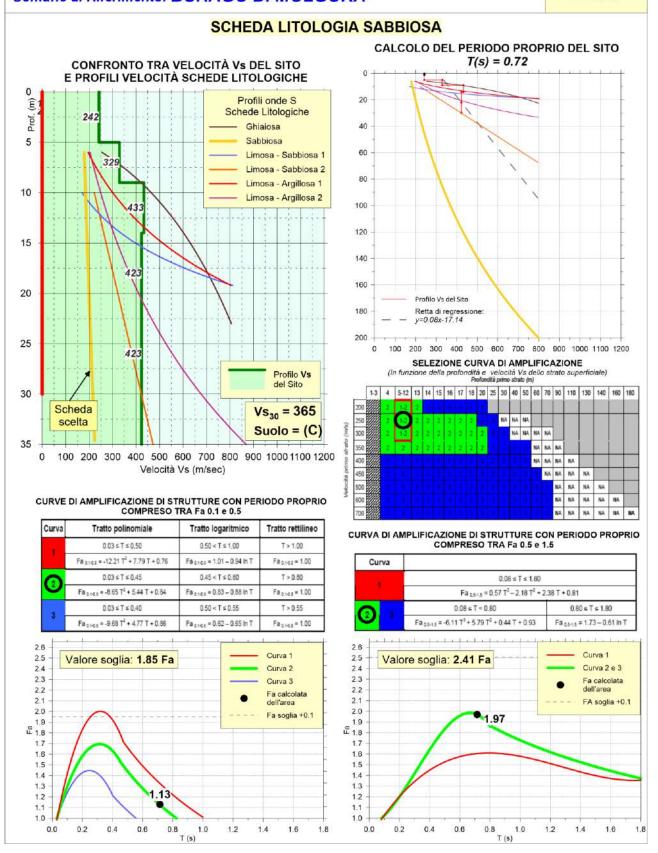


Fig. 64 – Scheda litologica per il punto di prova B01, declassato a suolo C.

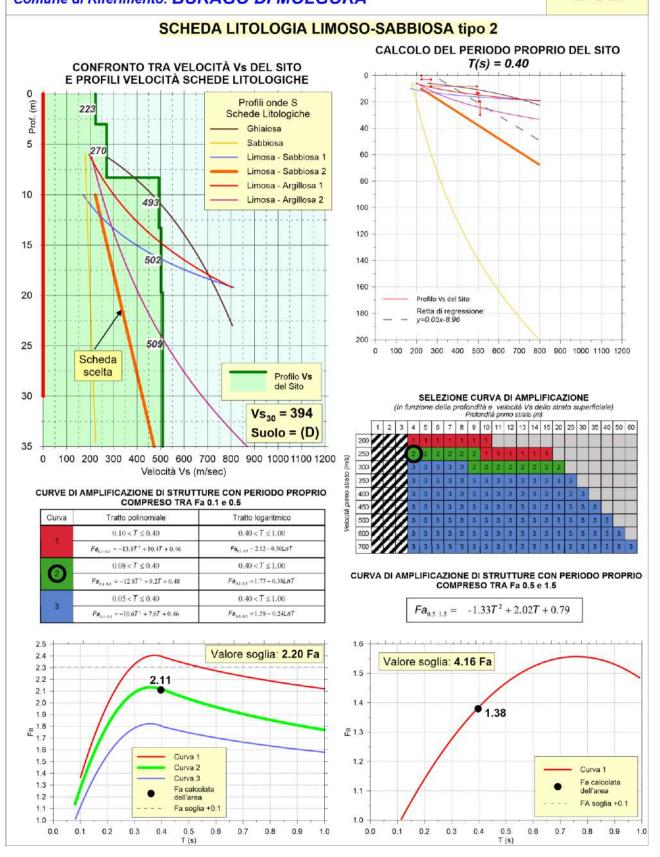


Fig. 65 - Scheda litologica per il punto di prova BO2, declassato a suolo D.

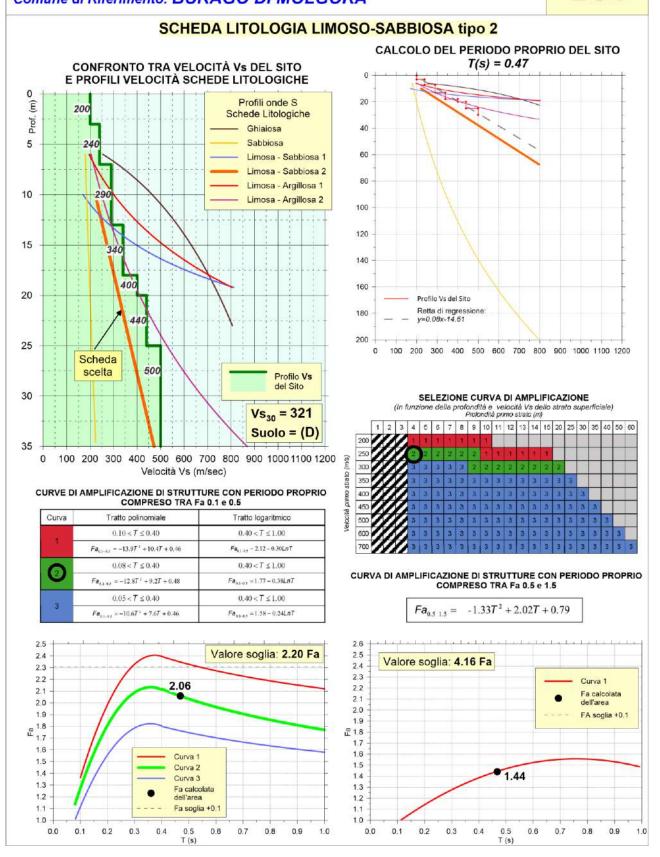


Fig. 66 - Scheda litologica per il punto di prova BO4, declassato a suolo D.

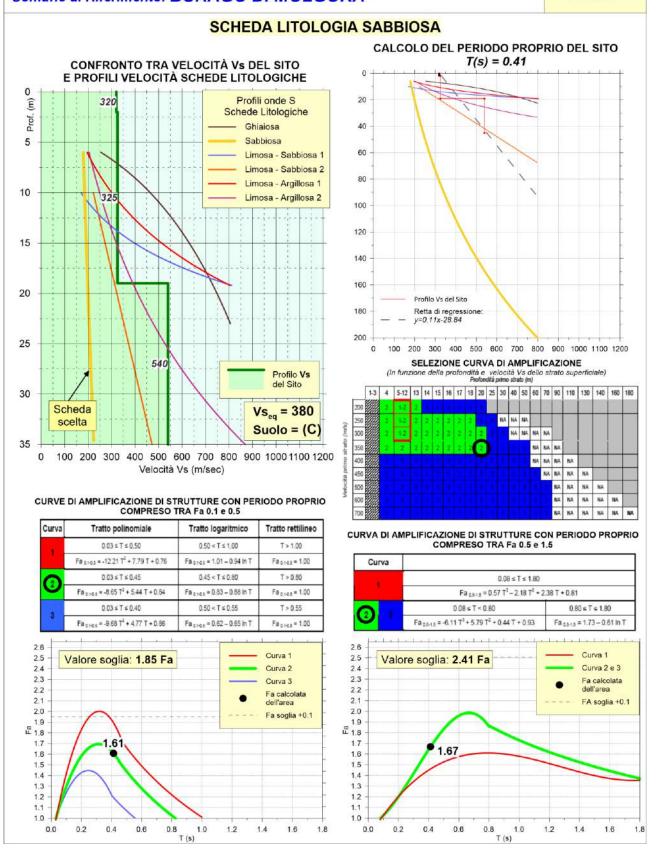


Fig. 67 - Scheda litologica per il punto di prova B07, declassato a suolo C.

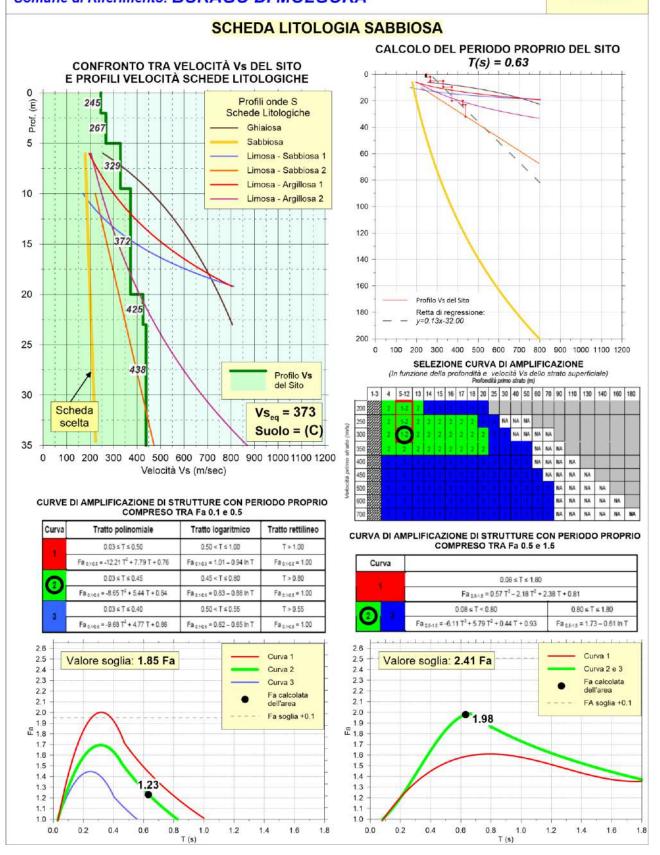


Fig. 68 - Scheda litologica per il punto di prova BO8, declassato a suolo C.

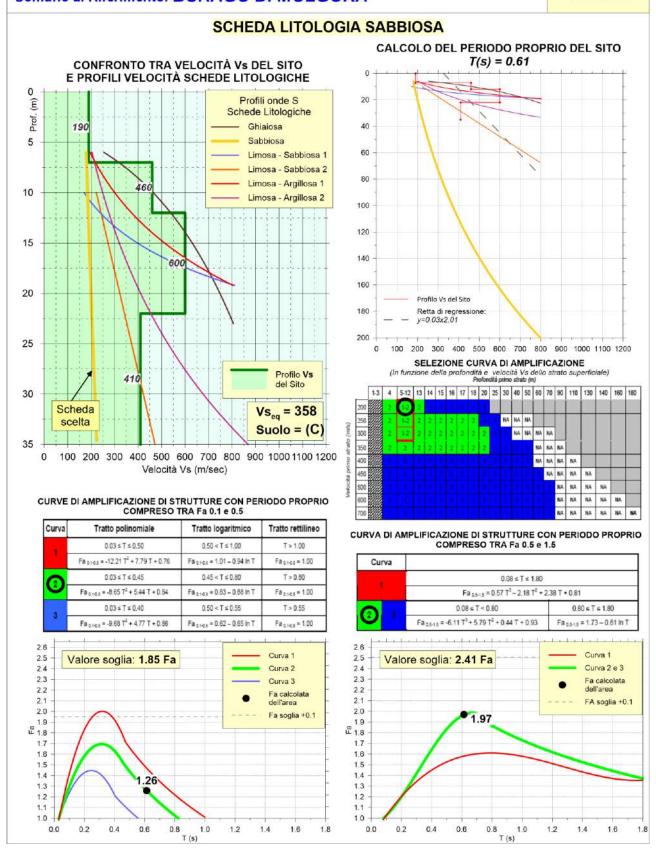


Fig. 69 - Scheda litologica per il punto di prova BO9, declassato a suolo C.

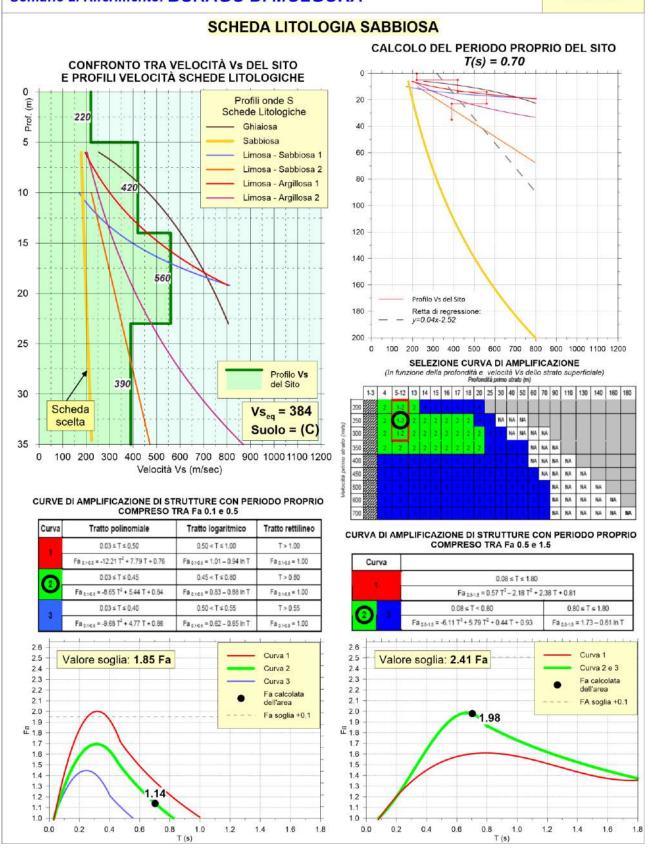


Fig. 70 - Scheda litologica per il punto di prova B10, declassato a suolo C.

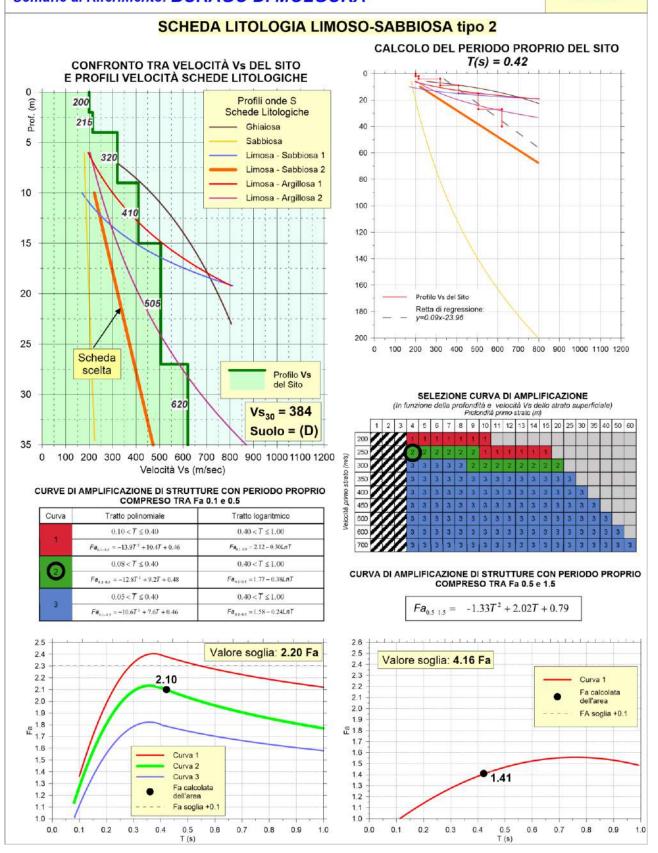


Fig. 71 - Scheda litologica per il punto di prova B11, declassato a suolo D.

7.4 Valutazione dell'azione sismica di progetto (NTC 2018)

7.4.1 Descrizione del moto sismico

Ai fini delle presenti norme l'azione sismica è caratterizzata da 3 componenti traslazionali, due orizzontali

contrassegnate da X e Y ed una verticale contrassegnata da Z, da considerare tra di loro indipendenti.

Le componenti possono essere descritte, in funzione del tipo di analisi adottata, mediante una delle seguenti

rappresentazioni:

accelerazione massima in superficie;

accelerazione massima e relativo spettro di risposta in superficie;

- storia temporale del moto del terreno.

Le due componenti ortogonali indipendenti che descrivono il moto orizzontale sono caratterizzate dallo

stesso spettro di risposta o dalle due componenti accelerometriche orizzontali del moto sismico.

La componente che descrive il moto verticale è caratterizzata dal suo spettro di risposta o dalla componente

accelerometrica verticale. In mancanza di documentata informazione specifica, in via semplificata

l'accelerazione massima e lo spettro di risposta della componente verticale attesa in superficie possono

essere determinati sulla base dell'accelerazione massima e dello spettro di risposta delle due componenti

orizzontali. La componente accelerometrica verticale può essere correlata alle componenti accelerometriche

orizzontali del moto sismico.

Ai fini della normativa NTC 2018 le forme spettrali sono definite, per ciascuna delle probabilità di

superamento nel periodo di riferimento Pvg, a partire dai valori dei seguenti parametri su sito di riferimento

rigido orizzontale:

ag accelerazione orizzontale massima al sito;

- **F**₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*_c valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello

spettro in accelerazione orizzontale.

Per tali valori, necessari per la determinazione delle azioni sismiche, si fa riferimento agli Allegati A e B al

Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4

febbraio 2008, n. 29, ed eventuali successivi aggiornamenti.

L'azione sismica così individuata viene successivamente variata, nei modi chiaramente precisati dalle NTC,

per tener conto delle modifiche prodotte dalle condizioni locali stratigrafiche del sottosuolo effettivamente

presente nel sito di costruzione e dalla morfologia della superficie. Tali modifiche definiscono la risposta sismica locale.

7.4.2 Azione sismica di progetto e spettro di risposta del sito

Nel presente lavoro l'azione sismica è descritta in termini di "accelerazione massima e relativo spettro di risposta atteso in superficie".

Una volta determinati i parametri del sito (accelerazione massima in superficie, suolo di fondazione e categoria topografica) è possibile calcolare con appositi programmi di calcolo, lo spettro di risposta del sito d'interesse.

Per il calcolo dell'azione sismica e degli spettri di risposta del sito (da Fig. 72 a Fig. 78), è stato utilizzato il programma di calcolo fornito dal Ministero dei Lavori Pubblici "Spettri di Risposta" versione 1.0.3.

Le prove sismiche realizzate e la conseguente verifica del fattore di amplificazione come da norma di Regione Lombardia hanno consentito di osservare la presenza di due tipologie di suoli di fondazione, rispettivamente le categorie "B" e "C".

I parametri di input relativi alle aree in cui sono state realizzate le prove, riferiti allo stato limite SLV ($T_R = 475$ anni), sono:

Accelerazione massima in superficie	0.066 g
F ₀ , valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale	2.581
Tc periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale	0.282 s

Gli ulteriori parametri selezionati sono:

$oldsymbol{V}_{N}$ vita nominale della costruzione	50 anni
c _u coefficiente d'uso della costruzione	1
Categoria topografica	T1
St Coefficiente di amplificazione topografica	1.00

Di seguito sono riportate le elaborazioni effettuate per le categorie di suolo B e C individuate nel territorio comunale nei punti presi in esame.

Spettri di risposta elastici per i periodi di ritorno T_R di riferimento

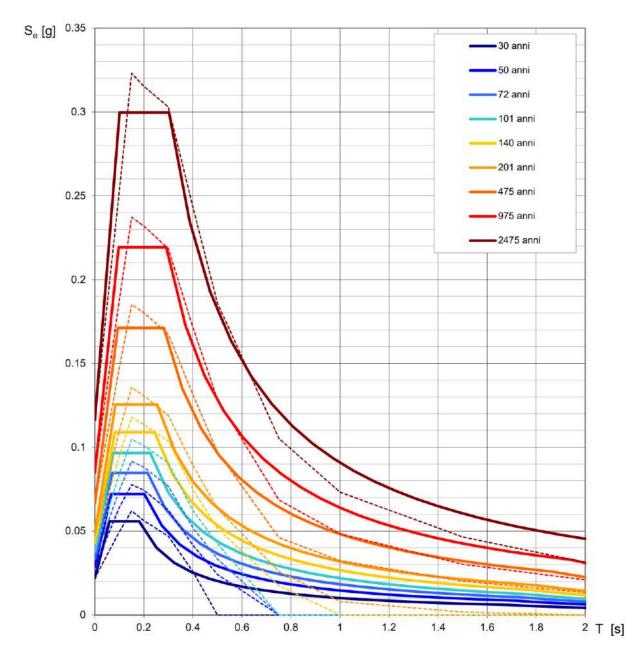


Fig. 72. Spettri di risposta elastici di input dei diversi Stati Limite (componenti orizzontali) per il Comune di Burago di Molgora.

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

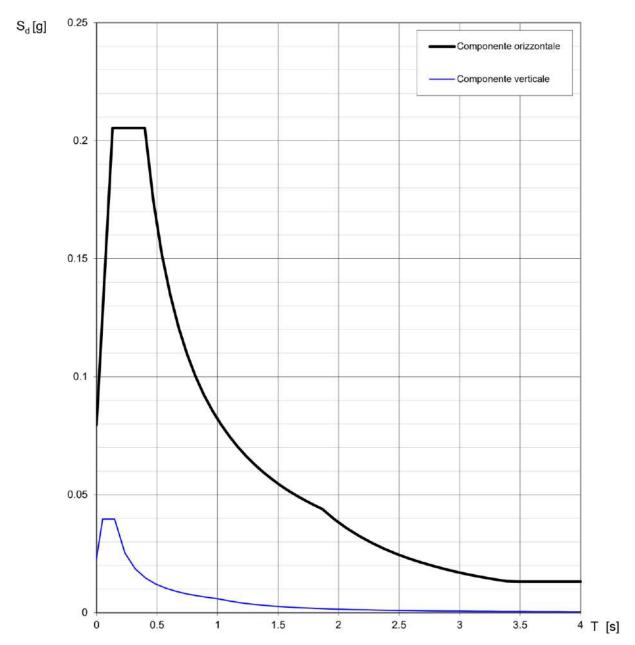


Fig. 73. Spettri di risposta elastici con suolo di tipo **B** per il Comune di Burago di Molgora.

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a _q	0. 066 g
Fo	2.581
T _C	0.282 s
S _S	1.200
C _C	1.417
S _T	1.000
q	1.000

Parametri dipendenti

S	1.200
η	1.000
T _B	0.133 s
T _C	0.399 s
T _D	1.865 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \qquad \qquad \text{(NTC-08 Eq. 3.2.5)}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \; \eta = 1/q \qquad \text{(NTC-08 Eq. 3.2.6; §. 3.2.3.5)}$$

$$T_{\rm B} = T_{\rm C} \, / \, 3 \tag{NTC-07 Eq. 3.2.8} \label{eq:ntc-07}$$

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

T_B

TD

	T [s]	Se [g]
	0.000	0.080
•	0.133	0.205
+	0.399	0.205
	0.469	0.175
	0.539	0.152
	0.609	0.135
	0.679	0.121
	0.748	0.110
	0.818	0.100
	0.888	0.092
	0.958	0.086
	1.028	0.080
	1.097	0.075
	1.167	0.070
	1.237	0.066
	1.307	0.063
	1.377	0.060
	1.446	0.057
	1.516	0.054
	1.586	0.052
	1.656	0.050
	1.726	0.048
	1.795	0.046
•	1.865	0.044
1	1.967	0.040
1	2.069	0.036
	2.170	0.032
	2.272	0.030
	2.373	0.027
9	2.475	0.025
	2.577	0.023
	2.678	0.021
	2.780	0.020
	2.882	0.018
	2.983	0.017
	3.085	0.016
	3.187	0.015
	3.288	0.014
	3.390	0.013
	3.492	0.013
	3.593	0.013
	3.695	0.013
	3.797	0.013
-	3.898	0.013
	4.000	0.013

Fig. 74. Parametri dello spettro orizzontale per il suolo di tipo **B** per il Comune di Burago di Molgora.

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a _{gv}	0. 023 g
S _S	1.000
S _T	1.000
q	1.500
T _B	0.050 s
T _C	0.150 s
Tp	1.000 s

Parametri dipendenti

F _v	0.897
S	1.000
η	0.667

Espressioni dei parametri dipendenti

$$\begin{split} S &= S_S \cdot S_T & \text{(NTC-08 Eq. 3.2.5)} \\ \eta &= 1/q & \text{(NTC-08 §. 3.2.3.5)} \\ F_v &= 1,35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0.5} & \text{(NTC-08 Eq. 3.2.11)} \end{split}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

Punt	dello spetti	
	T [s]	Se [g]
	0.000	0.023
T _B ◀	0.050	0.040
T _C ◀	0.150	0.040
	0.235	0.025
9	0.320	0.019
	0.405	0.015
	0.490	0.012
	0.575	0.010
	0.660	0.009
	0.745	0.008
	0.830	0.007
	0.915	0.007
T _D ◀	1.000	0.006
	1.094	0.005
	1.188	0.004
	1.281	0.004
;	1.375	0.003
	1.469	0.003
	1.563	0.002
	1.656	0.002
3	1.750	0.002
	1.844	0.002
	1.938	0.002
8	2.031	0.001
	2.125	0.001
	2.219	0.001
	2.313	0.001
	2.406	0.001
)	2.500	0.001
ÿ	2.594	0.001
	2.688	0.001
	2.781	0.001
	2.875	0.001
	2.969	0.001
	3.063	0.001
	3.156	0.001
	3.250	0.001
	3.344	0.001
	3.438	0.001
	3.531	0.000
	3.625	0.000
	3.719	0.000
3	3.813	0.000
	3.906	0.000
	4.000	0.000

Fig. 75. Parametri dello spettro verticale per il suolo di tipo **B** per il Comune di Burago di Molgora.

(NTC-08 Eq. 3.2.11)

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

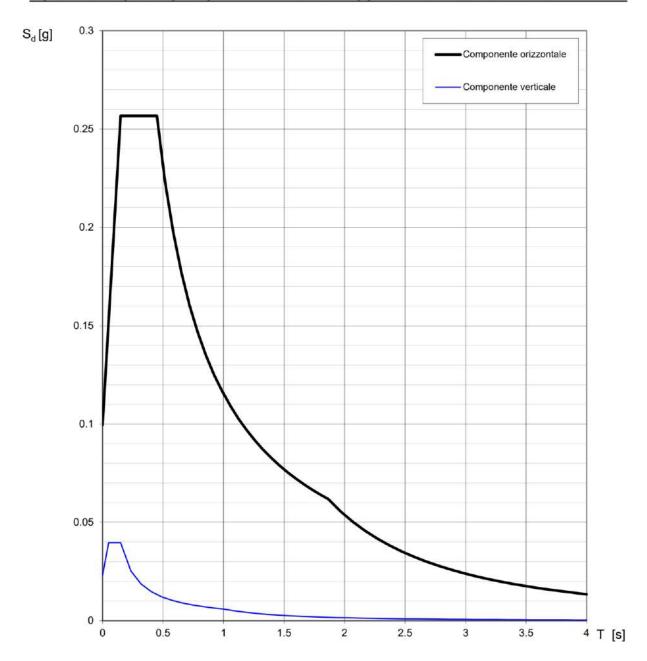


Fig. 76. Spettri di risposta elastici con suolo di tipo **C** per il Comune di Burago di Molgora.

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a _q	0. 066 g
Fo	2.581
T _C	0.282 s
S _S	1.500
C _C	1.595
S _T	1.000
q	1.000

Parametri dipendenti

S	1.500
η	1.000
T _B	0.150 s
T _C	0.449 s
T _D	1.865 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \qquad \qquad \text{(NTC-08 Eq. 3.2.5)}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \; \eta = 1/q \qquad \text{(NTC-08 Eq. 3.2.6; §. 3.2.3.5)}$$

$$T_{\rm B} = T_{\rm C}/3$$
 (NTC-07 Eq. 3.2.8)

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ & T_C \leq T < T_D \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \\ & S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

T_B

TD

uni	dello spettr	
	T [s]	Se [g]
	0.000	0.099
+	0.150	0.257
+	0.449	0.257
	0.517	0.223
	0.584	0.197
	0.652	0.177
	0.719	0.160
	0.786	0.147
	0.854	0.135
	0.921	0.125
	0.989	0.117
	1.056	0.109
	1.124	0.103
	1.191	0.097
	1.258	0.092
	1.326	0.087
	1.393	0.083
	1.461	0.079
	1.528	0.075
	1.596	0.072
	1.663	0.069
	1.730	0.067
	1.798	0.064
•	1.865	0.062
	1.967	0.056
	2.069	0.050
	2.170	0.046
	2.272	0.042
	2.373	0.038
	2.475	0.035
	2.577	0.032
	2.678	0.030
	2.780	0.028
	2.882	0.026
	2.983	0.024
	3.085	0.023
	3.187	0.021
	3.288	0.020
	3.390	0.019
	3.492	0.018
	3.593	0.017
	3.695	0.016
	3.797	0.015
	3.898	0.014
	4.000	0.013
		-

Fig. 77. Parametri dello spettro orizzontale per il suolo di tipo ${\it C}$ per il Comune di Burago di Molgora.

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a _{gv}	0. 023 g
S _S	1.000
S _T	1.000
q	1.500
T _B	0.050 s
T _C	0.150 s
Tp	1.000 s

Parametri dipendenti

F _v	0.897
S	1.000
η	0.667

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = 1/q \tag{NTC-08 §. 3.2.3.5}$$

$$F_{\rm v} = 1,35 \cdot F_o \cdot \left(\frac{a_{\rm g}}{g} \right)^{0.5} \tag{NTC-08 Eq. 3.2.11} \label{eq:special}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

Punti dello spettro di risposta		
	T [s]	Se [g]
	0.000	0.023
T _B ◀	0.050	0.040
T _C ◀	0.150	0.040
	0.235	0.025
	0.320	0.019
	0.405	0.015
	0.490	0.012
	0.575	0.010
	0.660	0.009
	0.745	0.008
	0.830	0.007
	0.915	0.007
T _D ◀	1.000	0.006
	1.094	0.005
	1.188	0.004
	1.281	0.004
	1.375	0.003
	1.469	0.003
	1.563	0.002
	1.656	0.002
	1.750	0.002
	1.844	0.002
	1.938	0.002
	2.031	0.001
	2.125	0.001
	2.219	0.001
	2.313	0.001
	2.406	0.001
	2.500	0.001
	2.594	0.001
	2.688	0.001
	2.781	0.001
	2.875	0.001
	2.969	0.001
	3.063	0.001
	3.156	0.001
	3.250	0.001
	3.344	0.001
	3.438	0.001
	3.531	0.000
	3.625	0.000
	3.719	0.000
	3.813	0.000
	3.906	0.000
	4.000	0.000

Fig. 78. Parametri dello spettro verticale per il suolo di tipo **C** per il Comune di Burago di Molgora.

R4251 - 125/129

8 CARTA DEI VINCOLI

L'elaborazione della Carta dei Vincoli (Tav. 7) prende atto degli elementi di vincolo geologico territoriale

presenti sul territorio (Fig. 79) che possiamo suddividere in:

Vincoli determinati nell'ambito del Piano di Gestione del Rischio di Alluvioni (PGRA) e del Piano

Assetto Idrogeologico (PAI)

Sono riassunti in questa dicitura i vincoli connessi al PGRA, che per il territorio comunale prevede zone

lungo il Torrente Molgora caratterizzate da tre scenari in funzione del grado di pericolosità (ambito RP):

Scenario frequente H/P3 (aree allagabili per piena frequente con tempo di ritorno Tr di 10 anni);

o Scenario poco frequente M/P2 (aree allagabili per piena poco frequente con tempo di ritorno

Tr ≥ 100-200 anni);

Scenario raro L/P1 (aree allagabili con Tr per piena poco frequente con tempo di ritorno Tr ≥

500 anni).

Nel PAI vigente non sono presenti fasce PAI sul territorio comunale di Burago di Molgora, tuttavia, in data

17.07.2023 con Decreto n°54/2023, l'Autorità di Bacino Distrettuale del Fiume Po ha adottato il progetto

di aggiornamento delle fasce fluviali del PAI Po e delle mappe delle aree allagabili del PGRA, relativo al

torrente Molgora e al sistema idrografico delle Trobbie fino alla confluenza nel Canale Muzza (per

maggiori dettagli fare riferimento al capitolo 6.3 – Variante PAI 2023 – e alle Norme Geologiche di Piano).

Nella Carta dei Vincoli si riporta in estratto la mappa relativa alla nuova delimitazione delle fasce PAI e

delle aree allagabili PGRA della suddetta Variante PAI 2023 in corso di approvazione (dettaglio sul comune

di Burago di Molgora) che deve essere tenuto in debita considerazione in funzione del citato Art. 5 (vedi

cap. 6.3).

Vincoli di Polizia Idraulica

Reticolo Idrico Principale (Torrente Molgora), con pertinente fascia di rispetto di 10 metri – Art.

96 R.D. n. 523/1904.

Reticolo Idrico Minore di competenza comunale non presente nel territorio comunale, così come definito

nello specifico Studio del Reticolo Idrico Minore.

Aree di salvaguardia delle captazioni ad uso idropotabile:

Zona di tutela assoluta (r = 10 metri) - D.Lgs. n. 258/00 art. 5 comma 4, d.g.r. n. 7/12693 del

10/04/03, D.Lgs. n. 152/06 - art. 94;

Zona di rispetto (r = 200 m) secondo il criterio geometrico - D.Lgs. n. 258/00 art. 5 comma 5, 6

e 7 - d.g.r. n. 7/12693 del 10/04/03 – D.Lgs. n. 152/06 – art. 94 (per i pozzi 001, 002, 004, 005 e

008);

o Zona di rispetto secondo il criterio temporale per il pozzo 003, come da D.D.G. n. 70785 del

23/12/1997.

Vincoli territoriali – Norme del Piano PTCP di Monza-Brianza

Settori con Grado di Suscettività Moderato, Alto e Molto Alto al fenomeno degli "Occhi Pollini"

(Art. 8);

Sistema delle acque superficiali (Art. 10)

Reticolo idrografico naturale ed artificiale: previsioni prescrittive e prevalenti di cui al

comma 4 (T. Molgora - MB010);

Elementi geomorfologici (Art. 11)

Orli di terrazzo;

• Ambiti vallivi dei corsi d'acqua: riferiti a settori specifici della valle del Torrente Molgora.

Vincoli territoriali - Norme del Piano del Parco Agricolo Nord Est: Parco istituito con Decreto

Deliberativo Presidenziale della Provincia Monza Brianza, n. 83 del 20/07/2017. Incorpora l'ex Parco

del Torrente Molgora.

Aree industriali per trasformazione d'uso: Aree che in fase di modifica dovranno essere sottoposte

alle analisi di caratterizzazione secondo le procedure del D.Lgs. n. 152/06 "Norme in materia

ambientale" – Titolo V, Parte Quarta – siti contaminati – valori di riferimento: Tab. 1 – colonne A e B

- Allegato 5 del Titolo V. Nel territorio di Burago di Molgora oltre agli edifici industriali anche l'ex

vivaio Antologia rientra in questa categoria essendo classificata come area dismessa.

GEOINVEST s.r.l.
Geologia-Geofisica

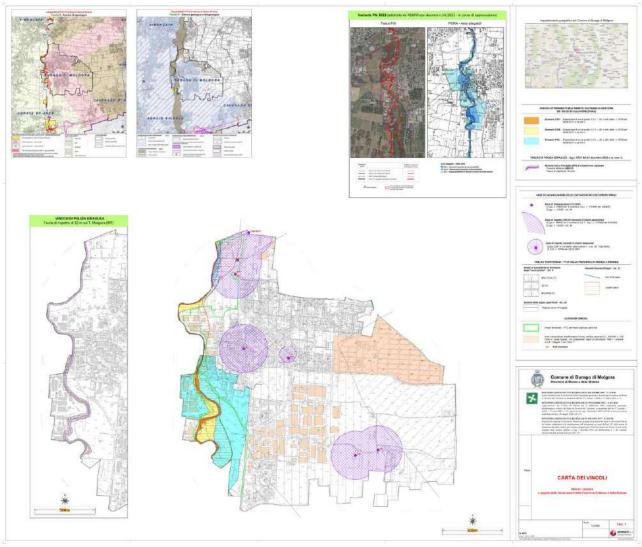


Fig. 79 – Carta dei Vincoli (Tav. 7, fuori scala).

9 CARTA DI SINTESI DELLE PROBLEMATICHE GEOAMBIENTALI

La sintesi proposta evidenzia e riorganizza gli elementi conoscitivi raccolti in funzione del loro significato

rispetto alle scelte di utilizzo del territorio e, in particolare, alle destinazioni e trasformazioni d'uso definibili

in sede di pianificazione locale.

L'elaborato cartografico di Sintesi (Tav. 8, fuori scala in Fig. 80) è stato redatto a partire dalle indagini di base

condotte sul territorio comunale, per le quali si rimanda ai capitoli precedenti. A tal fine, sono stati individuati

differenti problematiche, di seguito brevemente descritte:

AREE VULNERABILI DAL PUNTO DI VISTA IDROGEOLOGICO

Il problema della salvaguardia delle acque sotterranee può essere affrontato sia considerando la litologia dei

complessi idrogeologici e le caratteristiche della loro copertura (vulnerabilità intrinseca degli acquiferi) sia da

quello delle possibili fonti di rischio presenti sul territorio (quali le fonti di rischio industriale).

Un'elevata vulnerabilità idrogeologica, o la prossimità di punti di captazione idrica ad uso idropotabile,

richiedono forme crescenti di salvaguardia del territorio e la limitazione o l'esclusione di forme di uso del

suolo che possano costituire una fonte di rischio - inquinamento - per le acque sotterranee o che possano

interferire in senso fisico con gli acquiferi sotterranei e con la loro ricarica.

In funzione delle elaborazioni di cui al capitolo relativo all'idrogeologia, il territorio comunale è così

classificato:

- Settore con Vulnerabilità Intrinseca ALTA che caratterizza la quasi totalità del territorio comunale

eccetto la zona nell'intorno del T. Molgora;

Settore con Vulnerabilità Intrinseca MODERATA corrispondente all'intorno del T. Molgora nella sola

zona ovest del comune.

AREE VULNERABILI DAL PUNTO DI VISTA IDRAULICO

In funzione dell'analisi delle situazioni di possibile alluvionamento e conseguente rischio idraulico, espresse

nella presente relazione e nel collegato "Studio comunale di gestione del rischio idraulico" (ed. maggio 2021,

a cui si rimanda), sono definite:

Aree frequentemente inondabili in occasione di eventi con tempo di ritorno di 10 anni (scenario P3/H

del PGRA): sono riferite alla valle del Torrente Molgora. Attesi significativi valori di velocità ed altezze

d'acqua tali da pregiudicare l'incolumità delle persone, la funzionalità di edifici e infrastrutture e lo

svolgimento di attività economiche;

- Aree potenzialmente inondabili in occasione di eventi con tempo di ritorno superiore a 100 anni

(scenari P2/M e P1/L del PGRA): sono riferite sostanzialmente all'intorno del torrente Molgora nella

porzione settentrionale in sponda sinistra dove il torrente scorre lungo il confine comunale; la

GEOINVEST s.r.l.

seconda nella porzione centromeridionale sia in sponda destra che in sponda sinistra. Attesi valori di velocità ed altezze d'acqua tali da non pregiudicare l'incolumità delle persone, la funzionalità di edifici e infrastrutture e lo svolgimento di attività economiche;

- Aree a **pericolosità H3** e **H4** relative al tempo di ritorno di 10 anni, desunte dallo "Studio comunale di gestione del rischio idraulico" (ed. maggio 2021).

All'interno della Carta di Sintesi - Tav. 8 è stato inserito l'estratto della Planimetria delle criticità idrauliche ("Studio comunale di gestione del rischio idraulico" – BrianzAcque ed. 2021).

• AREE CHE PRESENTANO SCADENTI CARATTERISTICHE GEOTECNICHE

Vengono cartografate le aree caratterizzate da:

- settori con limi/argille superficiali con spessore dell'ordine di 3 metri e con caratteristiche geotecniche molto variabili;
- settori caratterizzati dalla presenza di occhi pollini, suscettività Alta e Molto Alta.

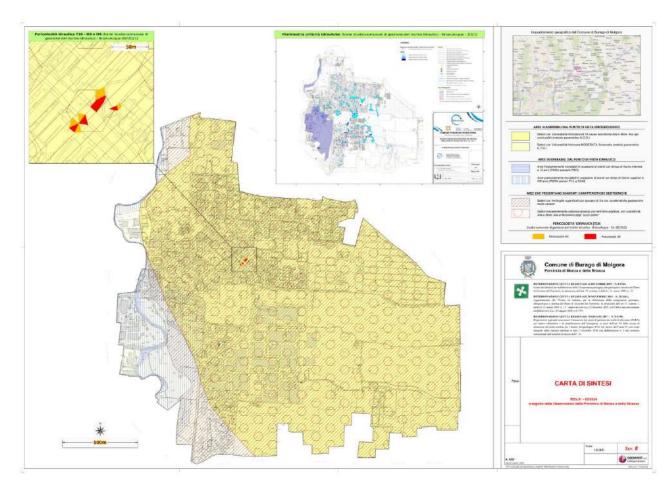


Fig. 80 – Carta di Sintesi (Tav. 8, fuori scala).

